Sometimes the calculator detects that an equation is too complicated to plot perfectly in a reasonable amount of time. When this happens, the equation is plotted at lower resolution.
Unresolved Detail In Plotted Equations
-
Monkey D Luffy \cos \left(xy^2\right)=\arctan \left(\sin \left(3yx\right)\right)
interesting...
-
Monkey D Luffy \tan \left(yx^2\right)=\cos \left(x^{10}-2y^x\right)
-
MJ Kim y^{x!}=x
-
Bombz z x^2+y^2=\cos \left(x^2y^2\right) apperantly...
-
InfernoGaming1 What is the money sign for when doing functions?
-
InfernoGaming1 Also Try
$ y>= |sin x| |cos y| |tan x| |csc y| |sec x| |cot y| $
$ y>= – |sin x| |cos y| |tan x| |csc y| |sec x| |cot y| $
-
Bombz z \left(\tan x\right)\left(\tan y\right)=a
change the a value all you want
-
Tiyer283 Another equation is : y=yx^yx
-
Kang Oedin Try this one. https://www.desmos.com/calculator/xrdcpqzbfh
-
Monkey D Luffy world of blocks
\operatorname{round}\left(\cos \left(y^2\right)\right)=\operatorname{round}\left(\sin \left(x\right)\right)
or
\operatorname{round}\left(\cos \left(y^2\right)\right)=\operatorname{round}\left(\sin \left(x^2\right)\right)
-
Alex Post x squared+y squared+= round(x squared+y squared). A beautiful one. So is x*y=round(x*y) The round command can be used a lot to break this.
-
Mr A. Crazy but cool at the same time -
y=\sin \left(x-y^2\right)\left(y-x^2\right)
-
-
Jhuber navagate the green dot up without hitting the red lines https://www.desmos.com/calculator/c4hnr3hyup
-
Jhuber also the lines that makes a heart doesn't count
-
Jhuber mod(cos(x),sin(x))
-
Jhuber this one has limits and what I call flareons https://www.desmos.com/calculator/gbhhofzbrv
-
Cobalt Some cool ones:
\tan \left(\sqrt{\left|x\right|}\right)=\tan \left(\sqrt{\left|y\right|}\right)
\tan \left(x!\cdot y!\right)^2=1 <---This one lags alot but is very cool
\tan \left(yx\right)=-x
\sqrt{\left(x-y\right)}=\frac{\tan \left(x^2\right)}{\tan \left(y\right)} <---This one looks like a footprint
\tan \left(x+y\right)^{\tan \left(e\right)}=\frac{\tan \left(y-x\right)}{2} <---This one looks like the ocean
\tan \left(\operatorname{floor}\left(x\right)\right)\le \tan \left(\frac{\operatorname{ceil}\left(y\right)}{\operatorname{sign}\left(y\right)}\right) <---This one is pixelated
\tan \left(xyxyxyxyxyxyxyxyxyxyxyxyxy\right)=1
\tan \left(x^2+y^2\right)=\sin \left(x\right)
\frac{\csc \left(x\right)}{\operatorname{floor}\left(y\right)}=\frac{\sqrt[3]{\frac{xy}{2}}}{\operatorname{ceil}\left(x\right)}
\frac{\tan x^2}{\tan y^2}>\frac{\tan y^2}{\tan x^2} <---True chaos
\left|\sin \left(x^2-y^2\right)\right|=\sin \left(x+y\right)+\cos \left(x\cdot y\right)
x^2\cos (x)=y\tan (y)
\sin \left(x^2+y^2\right)=\cos \left(x\cdot y\right) <---This one looks like an atom
e^{\sin \left(x\right)+\cos \left(y\right)}=\sin \left(e^{x+y}\right) <---My favorite
\sinh x^2\ge \operatorname{floor}\left(6y\right)
\frac{\sin x}{\operatorname{ceil}\left(y\right)}=\frac{\sqrt{\frac{\sin y}{\operatorname{floor}\left(x\right)}}}{\sqrt{\frac{\sin x}{\operatorname{floor}\left(y\right)}}}
\frac{\tan x^2}{\tan y^2}=\frac{\tan y^2}{\tan x^2}
\sin \left(7x\right)^2=\left(\sin \left(y\right)^2\cdot \tan \left(x\right)^2\right)
-
Evan Bailey Not really that cool, but still has unresolved detail:
Copy into Desmos:
y=\sqrt{3x+100\cos \left(y^2\right)}
Standard Formatting:
y=sqrt(3x+100cos(y^2))
-
Cobalt Best way to crash your CPU:
tan(x!*y!)=1
-
Wul531826 try tan(x!y!)^(x!y!)=1
-
Jhuber https://www.desmos.com/calculator/28kaxgqagi try to figure out how to make a code and look for squares.
https://www.desmos.com/calculator/hbrjlel3re enjoy my fake galixcy
-
Jhuber -
NathoMIL1416- Coding Tutorials Minecraft and More! For some PURE INSANITY: sin(cos(tan(x^2)))=sin(cos(tan(y^2)
For ALL the circles possible: sin(x^2)=cos(y^2)
-
Jet Taylor Go to my other post. Please.
-
Jet Taylor 0=\sin xy
Little function, big impact.
*POW*
0=\sin \left(x\right)\sin \left(y\right)
My computer ran slower.
1=a_1\sinx\cosx+a_2\sinx\cosy+a_3\siny\cosx+a_4\siny\cosy
I got drowned by the ocean.
-
Adam Jelinsky try (x^2-y^2)^2+(xy)^2=(x^2+y^2)^2
-
菅原悠人 This draws countless ∞.
sin(x)!=cos(y)
-
Jhuber Press play for crasyness
-
Liam Watson y=x^{y^x}-y^{x^y}
808 Comments