# Unresolved Detail In Plotted Equations

Sometimes the calculator detects that an equation is too complicated to plot perfectly in a reasonable amount of time. When this happens, the equation is plotted at lower resolution.

214 out of 237 found this helpful
Have more questions? Submit a request

• Evin Liang

\left(\frac{y}{x}\right)^2=\frac{\cos\left(\frac{x}{y}+\frac{y}{x}\right)}{-xy}

• Evin Liang

x^{yx}=y^{xy}

looks right to me.

• Evin Liang

\frac{x!^{y!}+\tan\left(-xy\right)+\frac{1}{2}}{\cos\left(x!\cdot\cos\left(y!!\right)\right)+\frac{yx}{y!x!}}+\ln\left(\frac{x!}{y!+x}\right)=\frac{y!^{x!}+\tan\left(-yx\right)+\frac{1}{2}}{\cos\left(y!\cdot\cos\left(x!!\right)\right)+\frac{xy}{x!y!}}+\ln\left(\frac{y!}{x!+y}\right)

• Evin Liang

\frac{d}{dx}\ln\left(xy\right)=\frac{d}{dx}x!

• Evin Liang

Remember you can use \frac{d}{dx}.

\frac{d}{dx}x^x=\frac{d}{dy}y!!

• Filip Šlosárek

x=\left|\left(x+y\right)^{\ z}-y\right|\                   (z=1)

• Veer Guda

why not

.5=\left(\cos \left(x\right)+\cos \left(y\sin \left(\frac{\pi }{5}\right)+x\cos \left(\frac{\pi }{5}\right)\right)+\cos \left(y\sin \left(\frac{2\pi }{5}\right)+x\cos \left(\frac{2\pi }{5}\right)\right)+\cos \left(y\sin \left(\frac{3\pi }{5}\right)+x\cos \left(\frac{3\pi }{5}\right)\right)+\cos \left(y\sin \left(\frac{4\pi }{5}\right)+x\cos \left(\frac{4\pi }{5}\right)\right)\right)

• Nathan Larsen

\left(x^{\left(2+x\right)}\right)+\left(y^{\left(2+x\right)}\right)=a_1^{\left(2+y\right)}+a_1^{\left(2+x\right)}

• Jesse Kreider

Would be nice if there was an option to turn that off for some of us that are curious... Probably not a good idea though.

• akash mahawar

[x][y]=x+y                           mathematics is very beautiful.

• Tobias Cunningham

How ‘bout y=x^y?

WARNING!

• Jeffrey Huang

Examples:

\sqrt{x^{69}}=x^{\frac{69}{2}}

\tan x=0.69

• Shuvam Mandal

sin(2x+3y) = 5 is also problematic in desmos

• Tobias Cunningham

x^y=y^x

• 3142 maple

\tan\left(y\cos\left(x\right)\right)=\tan\left(x\cos y\right)

Beautiful graph.

• 3142 maple

\sin\left(x\right)^{\cos y}=\sin\left(y\right)^{\cos x}

• Tobias Cunningham

• Johann Suarez

e^(xy^2) = x-y

• Eric Neschleba

Or z^zy^y + y^yx^x = x^xy^y + y^yz^z where z=1

• Tanksear Industries

\cos\left(\sin\left(\sqrt{\sqrt{\frac{x}{y}+\sqrt{\frac{y}{x^y}}}}+\sqrt{\sin\left(\frac{x}{y-\sqrt{\frac{x}{y^{x\%\operatorname{of}y}}}}\right)}\right)\right)\le\sin\left(\cos\left(\sqrt{\frac{yx}{ex^{ye}}}\right)\right)

(You have to zoom in on some parts

Edited by Tanksear Industries
• Tanksear Industries

in \left(\sqrt{\frac{x}{y^x}-\cos\left(\sin\left(\frac{y}{\sin\left(\frac{x}{\cos\left(\frac{y}{\sin\left(x\right)}\right)}\right)}\right)\right)-\frac{\frac{\sqrt{\frac{y}{x^{xy\left(y-x\right)}}}}{ex^{\frac{yex}{\sin\left(\frac{x}{y}\right)}}}}{\left|\tan\left(\sqrt{\cos\left(\frac{x}{y^{\sin\left(\frac{x}{y^{\sin\left(\frac{x}{y}\right)}}\right)}}\right)}\right)\right|}}\right)<\sec\left(\frac{\sqrt{\sqrt{\tan\left(\frac{y^x}{\left|x^x\right|}\right)-\frac{x}{y^{\frac{ex}{y}}}}}}{\frac{y}{x^{\sqrt{\frac{x}{y}}}}}\right)

Zoom in on the part that can be seen.

____________________________________________________________________________________

\sin\left(\sqrt{\frac{x}{y^x}-\cos\left(\sin\left(\frac{y}{\sin\left(\frac{x}{\cos\left(\frac{y}{\sin\left(x\right)}\right)}\right)}\right)\right)-\frac{\frac{\sqrt{\frac{y}{x^{xy\left(y-x\right)}}}}{ex^{\frac{yex}{\sin\left(\frac{x}{y}\right)}}}}{\left|\tan\left(\sqrt{\cos\left(\frac{x}{y^{\sin\left(\frac{x}{y^{\sin\left(\frac{x}{y}\right)}}\right)}}\right)}\right)\right|}}\right)>\sin\left(\sec\left(\frac{\sqrt{\sqrt{\tan\left(\frac{y^x}{\left|x^x\right|}\right)-\frac{x}{y^{\frac{ex}{y}}}}}}{\frac{y}{x^{\sqrt{\frac{x}{y}}}}}\right)\right)

Zoom in on the tiny dot that you will see.

• Tanksear Industries

\sin\left(\sqrt{\frac{x}{y^x}-\cos\left(\sin\left(\frac{y}{\sin\left(\frac{x}{\cos\left(\frac{y}{\sin\left(x\right)}\right)}\right)}\right)\right)-\frac{\frac{\sqrt{\frac{y}{x^{xy\left(y-x\right)}}}}{ex^{\frac{yex}{\sin\left(\frac{x}{y}\right)}}}}{\left|\tan\left(\sqrt{\cos\left(\frac{x}{y^{\sin\left(\frac{x}{y^{\sin\left(\frac{x}{y}\right)}}\right)}}\right)}\right)\right|}}\right)<\log\left(\frac{\sqrt{\sqrt{\tan\left(\frac{y^x}{\left|x^x\right|}\right)-\frac{x}{y^{\frac{ex}{y}}}}}}{\frac{y}{x^{\sqrt{\frac{x}{y}}}}}\right)

Same goes for this one, though it may take a bit more searching.

• Eric Neschleba

do sin(xy)+cos(y)=tan(x) if you want pewdiepie's youtube wallpaper. just zoom out!

• Rex Wargny

y!=sin x

they are all shocked at the circles

• Zoe Griffith

e=y^2x

• Zoe Griffith

y!=cos(x!)

Laggy, but you will not be disappointed.

• Eric Neschleba

sin(xyz)+cos(xy)=tan(z)  Set z as whatever you want!

• 12044289

https://www.desmos.com/calculator/p18dyaae8p

this was good

but I have a better equation that demos can't do due to its x and y limit it was

x/(y+z)+y/(x+z)+z/(x+y)=4

https://www.wolframalpha.com/input/?t=crmtb01&f=ob&i=a%2F(b%2Bc)%2Bb%2F(a%2Bc)%2Bc%2F(a%2Bb)%3D4

even better if you only use whole positive integers

• Tanksear Industries
\frac{x-\sqrt{\frac{y}{\left|x^2-\frac{x}{\sqrt{y^{-x}}}\right|}}}{y^{yx}}\le\frac{y}{\sqrt{\frac{x}{\sin\left(\frac{yx}{\sqrt{\sqrt{y^x}}}\right)}}}
• Tanksear Industries