# Unresolved Detail In Plotted Equations

Sometimes the calculator detects that an equation is too complicated to plot perfectly in a reasonable amount of time. When this happens, the equation is plotted at lower resolution.

281 out of 311 found this helpful
Have more questions? Submit a request

• Daemon Morrisoneagan

y^{-x}+x^{-y}=\tan\left(-y^2-x^2\right)

• Daemon Morrisoneagan
"
D35M05BR34K4G3MA5T3RFebruary 11, 2019 16:38

How about some crazy art?  To see it, go to https://www.desmos.com/calculator/z5o7ikzpwu ."

How 'bout dis? https://www.desmos.com/calculator/axflxs7r0j

• Daemon Morrisoneagan

I have done it. I have created............... TIDE PODS IN DESMOS!!!

\sin\left(\ln\left(\tan y\right)+\ln\left(\tan x\right)\right)=\operatorname{mod}\left(\ln x,\ln y\right)

\left\{x\le y\le-x\right\}\ \tan\left(y^2+x^2\right)=0.1

\left\{-x\le y\le x\right\}\tan\left(\left(y\right)^2+\left(x\right)^2\right)=0.1

• Penguins Bunny gamer

Also 4^x=3/2

• Pan Lin

x=ceil(x)

x=floor(x)

I just wanted to limit the domain in integer set, but they all don't work.

• Daemon Morrisoneagan

i need some help. if you put 9x/x in desmos, it puts a straight line like it should, but it puts random points all over the line. why?

• Daemon Morrisoneagan

WHOA.

\operatorname{ceil}\left(\cos y\right)+\operatorname{floor}\left(\cot y\right)=\operatorname{ceil}\left(\sin x\right)+\operatorname{floor}\left(\tan x\right)

\cos\left(y\right)+\cot\left(y\right)=\sin\left(x\right)+\tan\left(x\right)

• Daemon Morrisoneagan

Lovely.

\frac{\log\left(\tan\left(\cos y\right)\right)}{\csc\left(\log\left(\tan\left(\cos x\right)\right)\right)}=\frac{\log\left(\cot\left(\sin x\right)\right)}{\csc\left(\log\left(\cot\left(\sin y\right)\right)\right)}

\operatorname{floor}\left(\tan\left(\cos xy\right)\right)=\operatorname{ceil}\left(\sin\left(\cot xy\right)\right)

\operatorname{ceil}\left(\tan x^y\right)=\operatorname{floor}\left(\sin\frac{y}{x}\right)

r=\log\theta+\tan\theta+\sin\theta-\log\frac{1}{\theta}-\tan\frac{1}{\theta}-\sin\frac{1}{\theta}

• Tanksear Industries

https://www.desmos.com/calculator/g1jqs3rcfp

I had to zoom in quite a lot before the calculator would admit that this has unresolved detail.

• Daemon Morrisoneagan

\left(\tan x^2+y^2\right)+\left(\sin\frac{y^2-x^2}{x^2-y^2}\right)=\operatorname{pdf}\left(\operatorname{normaldist}\left(x^2+y^2\right),\log\left(x^2+y^2\right)\right)

i am a god of circle... music?... waves?

idk

• Daemon Morrisoneagan

...

\sin\left(\ln\left(\tan y\right)+\ln\left(\tan x\right)\right)\left(\tan x^2+y^2\right)+\left(\sin\frac{y^2-x^2}{x^2-y^2}\right)+\sin\left(\frac{\sqrt{x-\cos\left(\sqrt{x-x^{\sqrt{x-\sin\left(y\right)}}}\right)}}{x-yx}\cdot\cos\left(yx^{\sqrt{\frac{x}{y}}}\right)\right)\frac{\log\left(\tan\left(\cos y\right)\right)}{\csc\left(\log\left(\tan\left(\cos x\right)\right)\right)}\ge\cot\left(\frac{x}{y^{\sqrt{\sqrt{x-yx^y}}}}-\sqrt{x^{yx^{\frac{x}{y}}}}\right)\left(\operatorname{pdf}\left(\operatorname{normaldist}\left(x^2+y^2\right),\log\left(x^2+y^2\right)\right)\right)\frac{\log\left(\cot\left(\sin x\right)\right)}{\csc\left(\log\left(\cot\left(\sin y\right)\right)\right)}\operatorname{mod}\left(\ln x,\ln y\right)

• Daemon Morrisoneagan

\frac{\frac{\tan\left(\frac{x}{y+\frac{x\sin\left(\tan\left(\cos\left(\left(\ln x^2\right)!!\right)\right)\right)}{\sin y}}\right)}{2y-\cot\left(x\frac{\csc\left(\tan\left(\cos y\right)\right)}{\csc\left(\sec\left(\tan\left(\cos x\right)\right)\right)}\right)}}{\tan\left(\frac{y}{\frac{\sin x}{2x-\frac{y}{\frac{\tan5x}{2}}}}\right)}\le\frac{\frac{y}{x-\frac{\cos y}{\frac{\sin x}{\tan\left(y\right)\cdot-\frac{1}{\tan x}}}}}{\tan\left(\cos\left(\frac{xy}{\frac{\left(\frac{\sin\left(y\frac{\sin\left(\cot\left(\sin\left(\left(\ln y^2\right)!!\right)\right)\right)\sec\left(\cot\left(\sin x\right)\right)}{\csc\left(\sec\left(\cot\left(\sin y\right)\right)\right)}\right)}{x}\right)}{\tan xy}}\right)\right)}

• Daemon Morrisoneagan

i don't know what's going on with this equation: \frac{\left(2x^4+10x^3+12x^2\right)}{2x^2}=x^2+5x+6

i thought that it would graph the normal equation (or nothing), but this glitch is strange. it works with most (if not all) equal divided polynomials, like (x^4)/(x^2)=x^2

• Tanksear Industries

\cos\left(\frac{x}{y}\right)\le\csc\left(\frac{y}{x}\right)

Simple, but nice.

• Tanksear Industries

\cos55y=a\cdot22\sin\left(x\right)

Zoom in and it stops being unresolved.

• David Robillard
• Sun Shengkun

x^2+y^2=\cot\left(\cos\left(\csc\left(\operatorname{arccsc}\left(x^{x^{x^{x^{x\%\operatorname{of}y}}}}\right)\right)\right)\right)

• Linus Truver

\left(x^y\right)^2=x^{2y}

• Victor Marcelo

\frac{\left|\frac{x!}{y!}+\frac{y!}{x!}\right|}{\frac{10!}{x}}+\frac{\left|\frac{\left|\frac{x!}{y!}+\frac{y!}{x!}\right|}{\frac{10!}{x}}\right|}{32y}\cdot\frac{y!}{\frac{90}{4}}=y^{\frac{x!}{y!}}

Edited by Victor Marcelo
• Daemon Morrisoneagan

\cos\left(x\right)=\tan\left(y\right)

\sin\left(x\right)=\cot\left(y\right)

\cos\left(x\right)=\cot\left(y\right)

\sin\left(x\right)=\tan\left(y\right)

\tan\left(x\right)=\cos\left(y\right)

\tan\left(x\right)=\sin\left(y\right)

\cot\left(x\right)=\cos\left(y\right)

\cot\left(x\right)=\sin\left(y\right)

All at once! (p.s. set x axis to between 0 and 1.5, and y axis to between 0 and 1.5)

• Daemon Morrisoneagan
Tanksear IndustriesFebruary 28, 2019 16:54

\cos\left(\frac{x}{y}\right)\le\csc\left(\frac{y}{x}\right)

Simple, but nice.

Edited by Daemon Morrisoneagan
• Curtis Riggsbee

like x^y^x is greater than/equal to y^x^y

• Thomas Hall

sin x = cos y^2

• Daemon Morrisoneagan

b=\left[-10,-9,...,10\right]

\sin\left(\frac{by}{y^2}\right)=\sin\left(\frac{bx}{x^2}\right)

Welcome, TO THE MULTIVERSE!

• Alex Goss

why is there an intercept at -1.431*10^-17,1.431*10^-17

ABS(x^x^x^x^x)

• 168673
• Aidean The Awesome

sin(cos(x))=(cos(sin(y)))/tan(xy) isn't exactly crazy, but desmos will say that it cannot fully resolve it anyway.

• Chuping Mu

simply type arccos(cos(x))=0

another simple equation is \arctan\ y^x<\cot x^y it is so cool...

a beautiful tesselation is to key in \cot\ x>\tan\ y, putting the inequality sign in the reverse is fine too

finally another tangent equation \cot^2\ x<\tan^2\ y

• Michael Hubbard

sin(x)^2+sin(x)^2=1

• Owen Korver

tan(x)>cos(y)

Trig functions take things to weird levels