Unresolved Detail In Plotted Equations

Sometimes the calculator detects that an equation is too complicated to plot perfectly in a reasonable amount of time. When this happens, the equation is plotted at lower resolution.

Have more questions? Submit a request

923 Comments

  • 0
    Avatar
    Jaden Simis (Jadoof)

    \cos\left(x\right)=\sin\left(xy\right)

  • 0
    Avatar
    Sun Shengkun

    \int_a^bf\left(x\right)dx=\sec y

    it is lines but have unresolved details

  • 0
    Avatar
    Sun Shengkun
  • 0
    Avatar
    Sun Shengkun

    \pi x+\cos\left(\frac{\pi x}{5}\right)\left(\sin\ xy\right)\cot\left(x\right)=y

    hehe...

  • 0
    Avatar
    GlitchedGraph666

    \sum_{n_1=\sin\left(\sin\left(\sin\left(\sin\left(\sin\left(\sin\left(\sin\left(\sin\left(\sin\left(x!!!!!!!!!\right)\right)\right)\right)\right)\right)\right)\right)\right)}^{x^{x^{x^{x^{x^{\prod_{n_2=y^y}^{y^{2!^{x!!!!!!!!!!!!!!!!!!}}}n_2!!!!!!!!!!!!!!!!!!!^{n_2!!!!!!!}}+x}}}}}n_1^{x^{x^{x^{y^2}}}}+y^{y^{y^{y!!!!!!!!!!!!!!\cdot\prod_{n_{50}=2^{3^{4^{5^{6^{7^x}}}}}}^{\prod_{n_{100}=\prod_{n_{222}=666}^{x!!!!!!!!!!!!!}\left(n_{222}!^{n_{222}!^{n_{222}!}}\right)}^{\tan\left(y+\tan\left(y+\tan\left(y+\tan\left(y+\tan\left(y+\tan\left(y+\tan\left(y+\tan\left(y+\tan\left(y+\tan\left(y+\tan\left(y+x\right)\right)\right)\right)\right)\right)\right)\right)\right)\right)\right)}n_{100}!!!!!!!!}n_{50}!!!!!!!!!!}}}>x!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!+y!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!+\prod_{n_{732}=y!!!}^{x!!!}\sin\left(x!!!^{n_{732}!^{^{n_{732}!^{^{n_{732}!^{^{n_{732}!^{^{n_{732}!^{666}}}}}}}}}}\right)

  • 1
    Avatar
    Charliedevelin

    x!!!!!!!!!!!!!!!=y!!!!!!!!!!

  • 0
    Avatar
    Andrew Carratu

    and this:

    \csc\left(\pi x+\cos\left(\frac{\pi x}{5}\right)\left(\sin\ xy\right)\cot\left(x\right)\right)=\sec\left(y\right)

  • 0
    Avatar
    Orion D. Hunter

    sin(x!)=sin(y!) and x!=y! actually behaves like x=y but it has a difference in desmos

  • 0
    Avatar
    Orion D. Hunter

    https://www.desmos.com/calculator/spjy78xgeb just, why, was, sin(x!!)=sin(y!!) not, plotted, like, X=Y

  • 0
    Avatar
    Tanksear Industries
  • 0
    Avatar
    Thecubicalguy1
  • 0
    Avatar
    Joshua Lewinbl

    mod(x,sin(xy)^2)=y

  • 0
    Avatar
  • 0
    Avatar
    Lie

    This one is laggy so beware! \frac{x}{y}=\frac{3}{\sec\left(x^{5^y}\right)}

  • 0
    Avatar
    Lie

    This is not that detailed but I thought it looked SO COOL! \sqrt{x^2y^2}=\frac{9}{\sec\left(\pi x\right)}

  • 0
    Avatar
    Lie

    Put this in radian mode it looks cool: y=\frac{\cot\left(x\right)}{\tan\left(y\right)}

  • 0
    Avatar
    Lie
  • 0
    Avatar
    Orion D. Hunter
    Edited by Orion D. Hunter
  • 0
    Avatar
    Orion D. Hunter

    some comments were not loading

  • 0
    Avatar
    Lie

    (but it has to be in radians degrees is too anticlimactic): x^y=9\sin\left(\cot\left(3x\right)\right)

  • 0
    Avatar
    Filip Sedláček

    2^x * 2^y=2^(x+y)

  • 1
    Avatar
    D35M05BR34K4G3MA5T3R

    How about some crazy art?  To see it, go to https://www.desmos.com/calculator/z5o7ikzpwu .

  • 0
    Avatar
    Daemon Morrisoneagan

    this never ends. no matter how far you zoom, the is an endless pattern. \log\left(\tan\left(\cos\left(\ln x^2\right)\right)\right)=\log\left(\cot\left(\sin\left(\ln y^2\right)\right)\right)

    and this one i just can't explain.                                                                                        \log\left(\tan\left(\cos\left(\left(\ln x^2\right)!!\right)\right)\right)=\log\left(\cot\left(\sin\left(\left(\ln y^2\right)!!\right)\right)\right)

    Edited by Daemon Morrisoneagan
  • 0
    Avatar
    Tanksear Industries

    \sin\left(x-\sqrt[x-y^{\frac{\sqrt{\sqrt{xy^{x^{\frac{y}{x^y}}}-x^{yx}}}}{\sqrt{x\sqrt{x\sqrt{y\sqrt{\sqrt{x}}}}}}}]{\sin\left(\sqrt{x-\frac{\sin\left(x\right)}{x-y}}\right)}\left|\sin\left(\sqrt{x}\right)\right|\right)\le\sin\left(\sqrt{\sqrt{x^y}\sqrt{y-x^{yxy}}}\right)

  • 0
    Avatar
    Daemon Morrisoneagan
  • 0
    Avatar
    ANDREW TUCKER

    \tan\left(\frac{\sin\left(x+\tan\left(y\right)\right)}{y!-\sin\left(x\right)}\right)=\tan\left(\frac{\tan\left(y+\sin\left(x\right)\right)}{x!-\tan\left(y\right)}\right)

    \sin\left(x!^{\log\left(y!\right)}\right)=\tan\left(y^{\log\left(x\right)}\right)

    y=\tan\left(\frac{\sin\left(\tan\left(\frac{\tan\left(\frac{\sin\left(\frac{\sin\left(\tan\left(x\right)\right)}{\cos\left(\sin\left(y\right)\right)}\right)}{y-\tan\left(x\right)}\right)}{\tan\left(\tan\left(\frac{\tan\left(\tan\left(x\right)\right)}{y}\right)\right)}\right)\right)}{\tan\left(\tan\left(\tan\left(\frac{\tan\left(\sin\left(x\right)\right)}{y+\tan\left(x\right)}\right)\right)\right)}\right)   

    y=\tan\left(\frac{\tan\left(\frac{\sin\left(x+\tan\left(x\right)\right)}{y}\right)}{\sin\left(\tan\left(y\right)\right)}\right)  

  • 1
    Avatar
    Carson Perkins

    y=tan(cos(x^5(y)))

  • 0
    Avatar
    ANDREW TUCKER

    \tan\left(\frac{\tan\left(\sin\left(x\right)\right)\sin\left(\log\left(y\right)\right)}{\sin\left(x!-\cos\left(y\right)\right)!}\right)=\cos\left(\sqrt{\sin\left(\frac{\tan\left(x+\sin\left(y!\right)\right)}{x\cos\left(y-\tan\left(\sin\left(x!\right)\right)\right)}\right)!}\right)

    This one is a mess

    https://www.desmos.com/calculator/hzyizn3wep

     

  • 0
    Avatar
    Composer Machine

    \tan\left(2\cdot\cos\left(x\right)\right)=\frac{\sin\left(y^2-x^2\right)}{\log\left(2\right)}

    this makes an interesting design although it seems to form into a 'straighter line' as you zoom out on the left and right sides!

  • 1
    Avatar
    Yang Pan

    I was just bored
    lol
    https://www.desmos.com/calculator/uev2f3dwmw

    This one does the opposite of what others do. The more you zoom out, the more it becomes focused. Until, it just stops loading.

     

    Edited by Yang Pan
Please sign in to leave a comment.
Powered by Zendesk