Sometimes the calculator detects that an equation is too complicated to plot perfectly in a reasonable amount of time. When this happens, the equation is plotted at lower resolution.
Unresolved Detail In Plotted Equations

Tanksear Industries \csc\left(\frac{\sin\left(x!y\right)}{xy\cdot\sqrt{yyx}}\right)\ge x^0

Tanksear Industries \operatorname{median}\left(\sin\left(\operatorname{mod}\left(x,y\right)\right)\sin\left(y!\right)\cos\left(x!^2\right),\sqrt{\sqrt{\left\frac{x}{yyx!!\cdot\frac{x}{yy}}\right}},yxxxyyxyxy,x,\frac{yy!}{xx!}\right)\le\operatorname{mod}\left(\sin x,\cos y\right)
This one is just simply insane. 
Tanksear Industries https://www.desmos.com/calculator/porvrrhfzb
It doesn't have unresolved detail, but if you go to the right even a little bit, it gets weird. Why is this?

D35M05BR34K4G3MA5T3R Just sit back and eat fatty Doritos and see DESMOS BREAKAGE unfold in front of your eyes. So much heck will tick you off  So I suggest you either see a mental therapist before you see heck, or you see a MENTAL therapist and a doctor because you got an aneurysm from the graph. Good luck living!

D35M05BR34K4G3MA5T3R BTW, none of the nonfunctions are showing, so show the ones you want to see.

Tanksear Industries 
Jacob Kinnoin https://www.desmos.com/calculator/72scyk26ag
i took all of your suggestions and put it into a graph hahahahahahahaha

Tanksear Industries \tan\left(\sqrt{\frac{\sin\pi x}{4\pi x}}\left(xx^{\sqrt{\frac{x}{y}}}\right)\right)=0
I'm making weird graphs instead of learning algebra right now

168673 Fine art in graphs:

Pulsar a collection of a few zany ones. have fun!
https://www.desmos.com/calculator/sazf5e5gya 
Tanksear Industries \frac{x}{y}\ge\sin\left(xy\right)x
This one is pretty interesting

Tanksear Industries https://www.desmos.com/calculator/hmksg90dhm
Does anyone else notice the weird sort of gradient in one of the triangles? 
Tanksear Industries 
Tanksear Industries x+y=x^3+y^u
But you have to either switch a couple exponents or change u.

Tanksear Industries \operatorname{mean}\left(x,y,x^2,y^2,\sin\left(x\right),\cos\left(y\right),y+2,y^2,\sin\left(y\right),\tan\left(x+y\right),x\cdot y\right)=y!x+\sin x
I found this while digging around in my graphs 
Tanksear Industries https://www.desmos.com/calculator/sxplv8onxi
Y'all get the joke...?

David Robillard \frac{\sin\left(x!\right)+\sqrt[y]{x!}}{\tan\left(x^y\right)}\cdot\frac{\cot\left(y^x\right)}{\cos\left(y!\right)\sqrt[x]{y!}}=\frac{\frac{\sec\left(y!\right)\sqrt[x]{y!}}{\cot\left(x^y\right)}}{\frac{\tan\left(y^x\right)}{\csc\left(x!\right)+\sqrt[y]{x!}}}

Janders2 \operatorname{mod}\left(y,2\right)=\frac{\left(\sec\left(x\right)+3\right)}{e+\sin\left(5xy\right)}
This is insanity.

Jase W Andersonyoung \frac{\left(xy\cdot\ln\left(2\left(x^2\right)\right)\right)}{\cos\left(\sin\left(e\right)\right)}=\frac{yx}{e}+\frac{\left(\frac{\left(\frac{\left(\frac{\sin b}{\pi}+3\left(\tan\left(y\right)\ln\left(y\right)\right)^{\left(3+2x\right)}\frac{6x^2}{7y}\right)}{\sqrt{2^{\frac{x}{2}}}\frac{\left(8+x\cdot2\operatorname{mod}\left(4e,2y\right)\right)}{8\sin y}}\right)}{\frac{\left(\cos\left(\tan\left(y\right)+\sec\left(\frac{6x}{y}\right)\right)\right)}{\cot\left(6y\right)+2^a}\frac{\left(\sin x+\sin y\right)}{\tan y+\ln x\sin\left(x^2\right)}}+\frac{\left(\frac{\ln6}{y}+\cos x\right)}{\sum_{n=\frac{5}{x}}^{\sin\left(\sqrt{yx}\right)}\ln\left(\sin\left(\frac{x}{3y}\right)\right)}\right)}{\left(\sqrt{\operatorname{mod}\left(\sum_{n=y+\frac{\cos x}{\sec\left(y^3\right)}\ln\left(\frac{3y}{5}\right)}^{3^{\left(x+y\right)}}\frac{5y}{e^x}+\sqrt{3y},6bx^2\cdot y\sin\left(20\right)\right)}\right)}
b=\sqrt{yx}+e^{\sin x^{\left(2\right)}}+6\tan\left(y\right)
a=\frac{\sin x}{\frac{\sin y}{\frac{\sec x}{\pi xy+2}}}
It broke, there's nothing there at all unlike my last one which as i said was insanity.

300149 y=4x^y

Tanksear Industries https://www.desmos.com/calculator/nz4tghusvg
You will become like the title of this graph.

Tanksear Industries https://www.desmos.com/calculator/248moslqhp
The sign of confusion is \frac{x}{c^{yyx}}\cdot\sqrt{\sqrt{\frac{\frac{x}{y}x}{yyy}}}\cdot\sin\left(x\cdot\sqrt{xy}\right).

Tanksear Industries https://www.desmos.com/calculator/nggzobvv2r
...I should probably be working on my test right now.

Tanksear Industries \frac{x}{y}^x\cos\left(\frac{\sqrt{\frac{x}{yy^{\sqrt{yx}}}}xy}{\sqrt{\sqrt{\frac{y}{x^{yyx}xy}}}}\operatorname{floor}\left(\frac{yx}{xxy\cdot x^y}\right)\cdot\sqrt{\sqrt{\frac{xy}{x}}}\right)\le\operatorname{ceil}\left(\sin\left(\frac{x}{\sqrt{yx\cdot\sqrt{\sin\left(\sqrt{\sqrt{xx^{\sqrt{y}}}}\right)}}}\sqrt{\frac{x}{y}\cdot\sqrt{\sqrt{\frac{yyx}{yx}}}}\cdot xxx^{\sqrt{xyx}}\cdot\sqrt{\sqrt{\frac{ex}{x\%\operatorname{of}yyex}}}\right)\right)
for a good spot, https://www.desmos.com/calculator/s1ymshnxvy

Tanksear Industries 0\le\sin\left(\frac{y}{\sin\left(\frac{x}{\sin\left(\frac{y}{\sin\left(\frac{x}{\left(\sin\left(\frac{y}{\sin\left(x\right)}\right)\right)}\right)}\right)}\right)}\right)

Tanksear Industries https://www.desmos.com/calculator/al8k1gmqyd
Try moving around in this one. It's weird. 
Alexander You can also try \sin y=\frac{x^2}{y^3}, it turns out kinda weird

Noah Albrecht2000 \lefty\right\ =\ \sin\left(\frac{x}{3.5}\right)^2\cdot x
ist just getting bigger and it looks cool

GlitchedGraph666 \frac{\sin\left(x!\cdot y!\right)}{\tan\left(x^2!+y^2!+x^3!!+y^3!!!\right)}=\sin\left(\frac{x!}{y^2}\cdot\frac{y!}{x^2}\right)

D35M05BR34K4G3MA5T3R
927 Comments