Unresolved Detail In Plotted Equations

Sometimes the calculator detects that an equation is too complicated to plot perfectly in a reasonable amount of time. When this happens, the equation is plotted at lower resolution.

Have more questions? Submit a request

914 Comments

  • 0
    Avatar
    Tanksear Industries

    \sin\left(x!\right)\le\cos\left(\frac{y}{x}\right)

  • 0
    Avatar
    Leo s.

    \sin\left(x!!!!\right)\ge\cos\left(\frac{y}{x!}\right)!

  • 0
    Avatar
    Leo s.

    \sin(x!+y!!!)\ge\cos(y!!!+x!)

    inverse= 

    \sin(x!+y!!!)\le\cos(y!!!+x!)

  • 1
    Avatar
  • 0
    Avatar
    Leo s.

    \sin\left(y-x!\right)\ge\cos\left(x-y!\right)

    inverse=

    \sin\left(y-x!\right)\le\cos\left(x-y!\right)

  • 0
    Avatar
    Leo s.

    x!!!!!=\frac{y!!!!}{234567}

  • 0
    Avatar
    Leo s.

    \sin\left(x^{y!}-\left|y\right|\right)\le x!!

    go down!

  • 0
    Avatar
    Leo s.

    x\left|yx^{x!!!}\right|=\sin\left(y^{xxx!}\right)

  • 0
    Avatar
    Leo s.

    \left(x,y,x^2,y^2,\sin\left(x\right),\cos\left(y\right),y+2,y^2,\sin\left(y\right),\tan\left(x+y\right),x\cdot y\right)=x!

    looks completely different without the factorial(looks like this: !  ) at the end

  • 0
    Avatar
    Leo s.

    \sin\left(x!^2+z\right)=\cos\left(y!^2+z!\right)

     

    z= 10 or -10

    ( -10   <=z<= 10 step 20)

  • 0
    Avatar
    Leo s.

    \left|y!!!!!\right|\ge x\frac{\left(e^{5xy}+\left(\frac{1}{\ln\left(x\sin y\right)}\right)-\cos\left(\tan\left(\log\left(0.0012^{ex}\right)\right)^3\right)\right)}{32\pi y^2}

     

    it actually isn't  symmetrical

  • 2
    Avatar
    Tanksear Industries
  • 1
    Avatar
    Tanksear Industries
  • 0
    Avatar
    Tanksear Industries

    \frac{\sin\left(x!\right)}{\sin\left(y!\right)}=\frac{\sin\left(y!\right)}{\sin\left(x!\right)}

    Calculated Insanity. 

    If you zoom in on some parts, it looks 3D.

  • 1
    Avatar
    Thecubicalguy1

    Figured out how to get an infinite checkerboard:

    2\operatorname{ceil}\left(\frac{\operatorname{ceil}\left(x\right)+\operatorname{ceil}\left(y\right)}{2}\right)\ge\operatorname{ceil}\left(x\right)+\operatorname{ceil}\left(y\right)

    For the other half:

    2\operatorname{ceil}\left(\frac{\operatorname{ceil}\left(x\right)+\operatorname{ceil}\left(y\right)+1}{2}\right)\ge\operatorname{ceil}\left(x\right)+\operatorname{ceil}\left(y\right)+1

    Edited by Thecubicalguy1
  • 1
    Avatar
    Tanksear Industries

    Does anyone else notice how Desmos has trouble rendering squares...?

  • 1
    Avatar
    Thecubicalguy1

    Tanksear Industries yea, diagonal and horizontal/vertical squares are it's worst enemy when zooming out.

  • 0
    Avatar
    Tanksear Industries

    Those 45 degree angles... they get you every time

  • 0
    Avatar
    Finnigan Declan

    \sqrt{\left(\sin\left(x\right)\right)}(\sin(x))=\left(\cos(y)\right)!

     

  • 0
    Avatar
    GlitchedGraph666
  • 0
    Avatar
    GlitchedGraph666

    \frac{\sin\left(\left(\cos\left(\tan\left(\csc\left(\sec\left(\cot\left(\operatorname{mean}\left(x,y,x^2,y^2\right)\right)\right)\right)\right)\right)\right)+\cos\left(\tan\left(\csc\left(\csc\left(x^{2^{2^{2^2+y!!!!}}}\right)\right)\right)\right)\right)\cdot\tan\left(x^{\tan\left(y^{\tan\left(x\right)}\right)}\right)}{\tan\left(x^{\tan\left(x^{\tan\left(y^{\tan\left(y\right)}\right)}\right)}\right)}!!!!=\cos\left(\tan\left(\cos\left(\sec\left(\cot\left(\frac{x}{\tan\left(y!!!!\right)}\right)\right)\right)\right)\right)

  • 0
    Avatar
    GlitchedGraph666

    \frac{\sqrt{x^2+y^2}}{\cos\left(y^2\right)}>\frac{\sqrt{\frac{1}{x^2}+\frac{1}{y^2}}}{\sin\left(x^2\right)}

  • 0
    Avatar
    GlitchedGraph666

    \frac{\sqrt{\frac{\cos\left(x^2\right)^2\cdot\tan\left(y^{23}\right)+\operatorname{mod}\left(\sin\left(x\right),\sin\left(y\right)\right)}{\sqrt{y^{\tan\left(x!\right)}+\log\left(\sum_{n=1}^x\cos\left(y^n\right)\right)}}+\cos\left(\frac{x}{y^{2015}}\right)}}{\sqrt{\log\left(\frac{x}{\sqrt[\sin\left(\frac{x}{2^{\cos\left(x\right)}}\right)]{\frac{\cos\left(x^2\right)}{\operatorname{mod}\left(x^2,y^2\right)}}}\right)}}>\frac{\sqrt{\frac{\cos\left(x\right)}{\sin\left(x^{\tan\left(y\right)}\right)}+\sqrt{\frac{\cos\left(x\right)}{\sqrt[\cos\left(x^{\tan\left(x!\right)}\right)]{\operatorname{mod}\left(x^2,\tan\left(y\right)\right)}}}}}{\prod_{k=\cos\left(y^2\right)}^{x^2}\frac{\operatorname{mod}\left(x,\frac{k}{2}\right)}{\cos\left(x^2\right)}}

    Zoom in on whatever tiny dot you see

  • 0
    Avatar
    Leo s.

    (\sin\left(x!\right))^{\left(\sin\left(y!\right))\right)}\le\sin\left(y!!\right)

  • 0
    Avatar
    Leo s.

    \frac{\sin\left(x!\right)}{\sin\left(y!\right)}=\frac{\sin\left(y!!!\right)}{\sin\left(x!\right)}

  • 0
    Avatar
    Leo s.

    -\left|\operatorname{mod}\left(\frac{\sin x}{\sin y},\frac{\sin y}{\sin x}\right)!\right|=\operatorname{mod}\left(\frac{x}{y},\frac{y}{x}\right)

    zoom out

  • 0
    Avatar
    Leo s.

    xx+yy-10=0

    this is how to make a simple circle

  • 0
    Avatar
    Leo s.

    \frac{3xx}{yy}+\frac{2yy}{xx}-10=0

    3 lines in one equation

  • 0
    Avatar
    Leo s.

    \frac{3xx}{yy!}+\frac{3yy}{xx!}=1000xy^{x!}

     

    find the triangle

  • 0
    Avatar
    Leo s.

    \frac{3xx^x}{yy^y!}+\frac{3yy^y}{xx^x!}=1000xy^{x!}

     

    a nose?

Please sign in to leave a comment.
Powered by Zendesk