Unresolved Detail In Plotted Equations

Sometimes the calculator detects that an equation is too complicated to plot perfectly in a reasonable amount of time. When this happens, the equation is plotted at lower resolution.

Have more questions? Submit a request

876 Comments

  • 0
    Avatar
    Tanksear Industries
  • 0
    Avatar
    Jonahscott2020

    I have some advice on parametrics. Use 't'. Format the graph like a point. Check the point below for _<=t<=_. See https://www.desmos.com/calculator/0rvcnv5tey for an example. I know this has nothing to do with Unresolved detail in Plotted Equations, but its still cool.

     

  • 0
    Avatar
    Raj Mehta
  • 0
    Avatar
    Hetzer Andrew

    RedyyyRadicalyyyRatioyyCopeRativeyyyyoCoopeeeeyyyy\sin xCxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx=0.00008xCoClapopeR 

    I don't see what I did wrong

  • 0
    Avatar
    Michael Amadeus Wang

    This is ultimate: y^y=x^x, zoomed in at intersection:  https://www.desmos.com/calculator/riwuhrhbm8

  • 0
    Avatar
    Tanksear Industries

    \sinh^{-1}\left(x\right)\sinh\left(\frac{x}{\arcsin\left(y\right)}\right)=\sin\left(\sinh\left(\arcsin\left(y\right)\right)\right)

    This one's a bit strange...

  • 0
    Avatar
    339397

    \sin(x!+y!)=\cos(y!+x!)

    I don't even know what I actually did here...

  • 0
    Avatar
    Jonahscott2020
  • 1
    Avatar
    Leo s.

    this one takes a while

     

    \sec\left(xy\right)=\tanh\left(23y\right)

  • 1
    Avatar
    Leo s.

    this one actually works

     

    \sinh\left(x^{y^{x^{y^{y^{x^{y^{y^y}}}}}}}\right)=\csc^{-1}\left(y^{x^{x^{x^{x\sinh\left(y^{x\operatorname{mod}\left(x^{\operatorname{mod}\left(y,x\right)},y^{\operatorname{round}\left(yx\right)}\right)}\right)}}}}\right)

  • 1
    Avatar
    Leo s.

    try this one

    \cos\left(x!!!\right)=\cos\left(xy!!!\right)

  • 0
    Avatar
    Leo s.

    \sin\left(y^{y^{\tan\left(23^{x^x}\right)}}\right)=\cot\left(y^{y^{y^{\sin\left(x\right)}}}\right)

    looks kind of like this : 

                                        U

                                        ""

     

    it does!

  • 0
    Avatar
    Tanksear Industries

    https://www.desmos.com/calculator/kn3xfy2txf

    When you put fractals into a graphing calculator

  • 0
    Avatar
    Tanksear Industries

    https://www.desmos.com/calculator/lh3lupr08l

    This is basically a Desmos-breaking block of colour.

    But I couldn't get unresolved detail into there.

    Can anyone help me out with this?

  • 0
    Avatar
    Tanksear Industries

    https://www.desmos.com/calculator/phbpk96nju

    This does it on my computer... but apparently other computers don't. 

    -y!=\sin\left(xy\right)

    The farther down into negative y values you go, the more the madness intensifies.

    Does anyone else get this weird area (seen on the left of this screenshot) whenever there's unresolved detail?

    Edited by Tanksear Industries
  • 0
    Avatar
    GlitchedGraph666

    \frac{\frac{x\%\operatorname{of}y+\operatorname{mod}\left(\operatorname{round}\left(\frac{x^2}{y^2}+\sin\left(x\right)\right),\operatorname{round}\left(\frac{x}{2+\log\left(\frac{12}{x}\right)}\right)\right)}{\operatorname{mean}\left(\frac{\sin\left(x^2\right)}{\tan\left(y\right)},\frac{\cos\left(y^2\right)}{\tan\left(x\right)},\tan\left(x\right)\right)\cdot\log_{x+\frac{\cos\left(x^2\right)}{y^2+x^2}}\left(y\right)}}{\sin\left(x^y\right)}\cdot\frac{\frac{\ln\left(\tan\left(x^2\right)^{\log\left(x^2\right)}\right)^{\sin\left(y!\right)}}{\sqrt[x^{\sin\left(y\right)}]{\sin\left(y^{\tan\left(\frac{x}{\cot\left(y^2\right)}\right)}\right)}!+\cos\left(x^2\right)}!!+2}{\operatorname{mean}\left(\cos\left(x^2\right),\sin\left(y!!\right),\cos\left(x^2\right)\right)}!!>\frac{\frac{\sin\left(x^{\cos\left(\frac{y}{2}\right)}\right)\cdot\prod_{n=1}^{\operatorname{floor}\left(x^3\right)}n^{\cos\left(y\right)}\cdot n^2}{\gcd\left(\operatorname{floor}\left(x^{\tan\left(y\right)}\right),\operatorname{floor}\left(y^{\tan\left(x\right)}\right)\right)}}{\tan^2\left(\left(\cos\left(\frac{\pi}{5}\right)\right)\left(y\cos\left(\frac{\pi}{5}\right)+x\sin\left(\frac{\pi}{5}\right)\left(x\cos\left(\frac{2\pi}{5}\right)+y\sin\left(\frac{2\pi}{5}\right)\right)\right)\right)}

     

    Desmos will not even try to load.

  • 0
    Avatar
    GlitchedGraph666

    \cos\left(\sum_{k=\operatorname{floor}\left(y\right)}^{\prod_{n=\operatorname{floor}\left(x\right)}^{\operatorname{floor}\left(y\right)}n^{\operatorname{floor}\left(x\right)}}x^k\right)=\sin\left(\sum_{b=\operatorname{floor}\left(x\right)}^{\operatorname{floor}\left(y\right)}b^x+2\right)

    Breaks Desmos without lag.

  • 0
    Avatar
    GlitchedGraph666

    \tan\left(\sum_{n=\operatorname{floor}\left(x\right)}^{\operatorname{round}\left(\prod_{k=\operatorname{floor}\left(y\right)}^{\operatorname{round}\left(\tan\left(x\right)\right)\cdot5}k^{\sum_{a=\operatorname{floor}\left(x^{\tan\left(y\right)}\right)}^{\operatorname{floor}\left(x^3\right)}a^{x+\sin\left(y\right)}}\right)}n^{xxxxyyyy!!!!}\right)!!!\ge\cot\left(\prod_{c=\operatorname{floor}\left(x^2\right)}^{\sum_{v=\operatorname{round}\left(x\right)}^{\operatorname{floor}\left(y^2\right)}v^{\sin\left(x^2\right)}+\sin\left(x\right)}\frac{\sin\left(x^c\right)}{2}\right)

    Desmos will die very quickly without any lag, pain, or fatal errors.

    Edited by GlitchedGraph666
  • 0
    Avatar
    Tanksear Industries
  • 0
    Avatar
    Tanksear Industries

    y=y^{\frac{x}{yyx^{xxx}}}

    If you zoom in enough on a certain part, it does it.

  • 0
    Avatar
    GlitchedGraph666
  • 0
    Avatar
    GlitchedGraph666
  • 0
    Avatar
    GlitchedGraph666

    I do not know what the hell happened there. There is even some areas where the red and blue equations were both true and also false at the same time. Also, here is the graph.

    https://www.desmos.com/calculator/giblflg7a3

  • 0
    Avatar
    Tanksear Industries

    \frac{x^y}{y^x}=\frac{y^x}{x^y}

    Like x^y=y^x, but crazier (zoom way in on the intersection).

  • 0
    Avatar
    Tanksear Industries
  • 0
    Avatar
    Leo s.

    \tan x^y=\tan\left(y^{x!}\right)

  • 0
    Avatar
    Tanksear Industries
  • 0
    Avatar
    Tanksear Industries

    \tan\left(x\right)\le\cot\left(yx^{\tan\left(x\right)}\right)

     

  • 0
    Avatar
    Tanksear Industries

    https://www.desmos.com/calculator/4pimnvrqmb

    Wait for it to render.

    Then zoom out a bit.

    3D?

  • 0
    Avatar
    Leo s.

    \frac{x^{y!}}{y!^x}!=\frac{y!^x}{x^{y!}}!!

Please sign in to leave a comment.
Powered by Zendesk