Unresolved Detail In Plotted Equations

Sometimes the calculator detects that an equation is too complicated to plot perfectly in a reasonable amount of time. When this happens, the equation is plotted at lower resolution.

Have more questions? Submit a request

927 Comments

  • 1
    Avatar
    GlitchedGraph666

    \operatorname{median}\left(x,y,x+y,x\cdot y,x-y,\frac{x}{y},\sin\left(x\right),\sin\left(y\right),\cos\left(x\right),\cos\left(y\right),x^2,y^2,x^3,y^3,x!,y!,x!!,y!!,\operatorname{mean}\left(x,y,x+y,x\cdot y,x-y,\frac{x}{y},\sin\left(x\right),\sin\left(y\right),\cos\left(x\right),\cos\left(y\right),x^2,y^2,x^3,y^3,x!,y!,x!!,y!!\right),\log\left(x\right),\log\left(y\right),\log_x\left(y\right),\log_y\left(x\right),\tan\left(x\right),\cot\left(x\right),\tan\left(y\right),\cot\left(y\right),\operatorname{mean}\left(x,y,x+y,x\cdot y,x-y,\frac{x}{y},\sin\left(x\right),\sin\left(y\right),\cos\left(x\right),\cos\left(y\right),x^2,y^2,x^3,y^3,x!,y!,x!!,y!!,\operatorname{mean}\left(x,y,x+y,x\cdot y,x-y,\frac{x}{y},\sin\left(x\right),\sin\left(y\right),\cos\left(x\right),\cos\left(y\right),x^2,y^2,x^3,y^3,x!,y!,x!!,y!!\right),\log\left(x\right),\log\left(y\right),\log_x\left(y\right),\log_y\left(x\right),\tan\left(x\right),\cot\left(x\right),\tan\left(y\right),\cot\left(y\right)\right)\right)=x+y

    my gosh thats a long median function

  • 0
    Avatar
    GlitchedGraph666

    \tan\left(x^2\right)=\cot\left(y^2\right)

  • 0
    Avatar
    GlitchedGraph666

    \sin\left(x^2+z\right)=\cos\left(y^2+z\right)

    Low quality animation... ugh

  • 0
    Avatar
    Carolynd19480

    y=\frac{\left(e^{5xy}+\left(\frac{1}{\ln\left(x\sin y\right)}\right)-\cos\left(\tan\left(\log\left(0.0012^{ex}\right)\right)^3\right)\right)}{32\pi y^2}

  • 0
    Avatar
    GlitchedGraph666

    \cos\left(x\cdot\frac{y}{\sin\left(x\cdot y\right)}\right)=\frac{\frac{\tan\left(e^x\right)}{\sin\left(y\right)}\frac{\ln\left(\left|x^{e^y}\right|\right)}{\cos\left(x^e\right)}}{\cos\left(x^2\right)}+\sin\left(y\right)

  • 0
    Avatar
    GlitchedGraph666

    Welcome to glitch heaven.

  • 0
    Avatar
    GlitchedGraph666

    Here is the link to glitch heaven...

    https://www.desmos.com/calculator/1qnoulmlpk

    WARNING: YOU MAY GLITCH VERY BADLY UPON ENTERING THIS WORLD. ONCE YOU COME TO GLITCH HEAVEN, YOU MAY NEVER COME BACK...

  • 0
    Avatar
    GlitchedGraph666

    PASTE THIS FIRST!!! c=\left[1,2,...,175\right]

    \frac{\cos\left(x!\right)}{\sin\left(y!\right)}\cdot\left(\frac{\frac{\tan\left(y!\right)}{\cot\left(x!\right)}!}{\cos\left(y!\cdot\sin\left(x!\right)\right)}\right)^{\cos\left(x!y!\right)}+\frac{\left(\prod_{n=1}^{\operatorname{floor}\left(x\right)}\frac{n}{2^x}\right)^2}{2^x}<\sin\left(\frac{x!}{y!}\right)+c

    The portal to Glitch Hell

  • 0
    Avatar
    GlitchedGraph666

    \tan\left(\tan\left(\tan\left(\tan\left(\tan\left(\tan\left(\tan\left(\tan\left(\tan\left(x\cdot y\right)\right)\right)\right)\right)\right)\right)\right)\right)=0

    ULTRA LAG!!!!!!

  • 0
    Avatar
    GlitchedGraph666

    SUPERNOVA!!!!!!!!!!!!!!!!!!!!!!!

    PASTE THIS FIRST!!! a=\left[0,0.01,...,1\right]

    \tan\left(\cot\left(\tan\left(\cot\left(\tan\left(\cot\left(\tan\left(\cot\left(\tan\left(\cot\left(x^2\cdot y^2\right)\right)\right)\right)\right)\right)\right)\right)\right)\right)=a

    Breaks desmos

  • 0
    Avatar
    GlitchedGraph666
  • 0
    Avatar
    GlitchedGraph666

    \cos\left(\left|x\right|^{\sin\left(x\right)}\right)+\cos\left(\left|x\right|^{\sin\left(x\right)}\right)+\cos\left(\left|x\right|^{\cos\left(\frac{x}{2}+x\right)}\right)\cdot\left|x\right|^{\cos\left(x\right)}=\left|y\right|^{\cos\left(x\right)}

  • 0
    Avatar
    Evan Bailey

    \sqrt{\operatorname{mod}\left(x,2n\right)^2-2n\operatorname{mod}\left(x,2n\right)+n^2+\operatorname{mod}\left(y,2n\right)^2-2n\operatorname{mod}\left(y,2n\right)+n^2}=n

    This works for values of n less than about 0.8851803240642625580925084705086, at least with my screen size.

    Edited by Evan Bailey
  • 0
    Avatar
    Iamtheseventhpiano

    Here's a good one:

    2y = x^(y^(x + z))

    It meets at around z = 0.33459054437176421

  • 2
    Avatar
    Tanksear Industries
  • 0
    Avatar
    GlitchedGraph666

    \operatorname{mod}\left(\frac{\operatorname{floor}\left(x\right)^{y+\operatorname{floor}\left(7x\right)}}{\operatorname{mod}\left(y^{\operatorname{floor}\left(x\right)},17\right)},\operatorname{floor}\left(x\right)\right)^{\operatorname{mod}\left(\operatorname{floor}\left(\frac{y}{x}\right),16\right)}<\operatorname{floor}\left(\operatorname{mod}\left(y,x\right)\right)

  • 0
    Avatar
    GlitchedGraph666

    \frac{\left(\frac{\tan\left(x\cdot\frac{y}{2}\right)}{\log\left(\left|x\right|\right)}\cdot2^{\left(\frac{\pi}{2}\cdot x^2\right)}\cdot5-y\right)}{\prod_{n=1}^{\operatorname{floor}\left(x+y\right)}\cos\left(\frac{n}{2}\right)}=\cos\left(\frac{x}{y}\right)

  • 0
    Avatar
    GlitchedGraph666

    \frac{\log_{\cos\left(x\cdot y\right)}\left(\left|x\cdot y\right|\right)}{\sqrt{\left|x^y\right|}}=\cos\left(\frac{y}{2}\right)

  • 0
    Avatar
    GlitchedGraph666

    \frac{\ln\left(\left|x^2\right|\right)^{\sin\left(x\right)}}{\cos\left(y+\tan\left(x^2\right)\cdot\sqrt[\cos\left(x^2\right)]{y^2}\right)}>\frac{\sin\left(y\right)}{x\cdot2}

    \frac{\sin\left(x!\right)\cdot\log_{y\cdot\frac{\sin\left(x\right)}{2^x}!}\left(\left|\sin\left(x!\right)\cdot3!\right|\right)}{\sqrt[x^3\%\operatorname{of}\cos\left(\frac{y}{2}\right)\cdot34]{\cos\left(x\right)}}=\frac{\cos\left(y!\right)}{2\cdot\frac{\sin\left(y!\right)!\cdot\cos\left(x!\right)}{\sqrt[\sin\left(x^2\right)]{\cos\left(y^2\right)}}}

    \frac{\cos\left(x\right)\cdot x^{y^2}}{y^2+\frac{x^2\cdot\sin\left(x\right)\log_{\cos\left(\sqrt[\sin\left(\frac{x}{y}\right)]{x^y}\right)}\left(\frac{\cos\left(x\right)}{\sin\left(y\right)}\cdot3^x\right)^{y^x}}{\csc\left(\frac{y\cdot\log\left(x^2\right)+\log_{\cos\left(\sqrt[\sin\left(\frac{x}{y}\right)]{x^y}\right)}\left(\frac{\cos\left(x\right)}{\sin\left(y\right)}\cdot2\right)^{3^x}}{\ln\left(\left|\frac{x^2}{y}+\sin\left(x\right)\right|\right)}\right)}}+\frac{\cos\left(\log_{\frac{\cos\left(\frac{x}{2}\right)}{y^2}\cdot x^2}\left(x^2\right)\right)}{\log\left(\left|\frac{x^y}{2\cdot\operatorname{mean}\left(x\cdot\cos\left(y\right),\sin\left(x\right),\ln\left(\left|x\right|\right)\right)}\right|\right)}=\frac{\sin\left(x\right)\cdot x^2}{\cos\left(x\right)\cdot y}

  • 0
    Avatar
    Christian Ho

    x!+y!=(x+y)!

  • 1
    Avatar
    Christian Ho

    This is why we need quantum computers

  • 0
    Avatar
    Ethan Olcott

    Try:

    u=e^(x)-1

    x=ln(u+1

  • 0
    Avatar
    Isaac Westawski

    https://www.desmos.com/calculator/yxawkfgzau

    its even broken when you remove tan(x^2)

  • 0
    Avatar
    Isaac Westawski

    https://www.desmos.com/calculator/tuyhlzw7un

     

    an """ANOMOLY"""

     

    honestly its broken yet beautiful.

     

    this is why we need quantum computers.

  • 0
    Avatar
    Tanksear Industries
  • 0
    Avatar
    Sam Can

    X!=5 broke mine but it was fine with 

    $0.5=\left(\cos \left(x\right)+\cos \left(y\sin \left(\frac{\pi }{5}\right)+x\cos \left(\frac{\pi }{5}\right)\right)+\cos \left(y\sin \left(\frac{2\pi }{5}\right)+x\cos \left(\frac{2\pi }{5}\right)\right)+\cos \left(y\sin \left(\frac{3\pi }{5}\right)+x\cos \left(\frac{3\pi }{5}\right)\right)+\cos \left(y\sin \left(\frac{4\pi }{5}\right)+x\cos \left(\frac{4\pi }{5}\right)\right)\right)$

  • 0
    Avatar
    Tanksear Industries

    y=\sin\left(xX\cdot Hello\cdot I\cdot am\cdot Connor\cdot the\cdot android\cdot sent\cdot by\cdot Cyberlife\cdot Xx\right)

    I used memes to do it...

    You can mess around with the variables' values if you want, but it works fine if they're just at 1 as well.

  • 0
    Avatar
    Tanksear Industries

    \frac{\csc\left(\sec\left(\frac{x^x}{\frac{x}{\frac{x}{\frac{x}{x}}}}\right)\right)}{\frac{yx\left(\sec\left(\cos\left(\tan\left(\csc\left(\cot\left(\pi x^2\right)\right)\right)\right)\right)\right)}{\frac{\left|\cos\left(x^{x^{yxyx^2}}\right)\right|}{\csc\left(dank\cdot memes\cdot\frac{x!}{y!}\right)}}}^{\sec\left(\operatorname{floor}\left(\operatorname{ceil}\left(\csc\left(xyx^{2xy^2}\right)\right)\right)\right)}

    *make sure to define all variables*

     

  • 0
    Avatar
    Tanksear Industries

    x!!!!!!!!!!=y!!!!!!!!!!

    A jacked-up version of x!!=y!!.

  • 0
    Avatar
    Tanksear Industries

    \sin\left(x!\right)=\sin\left(y\right)

    This is actually quite interesting...

Article is closed for comments.
Powered by Zendesk