# Unresolved Detail In Plotted Equations

Sometimes the calculator detects that an equation is too complicated to plot perfectly in a reasonable amount of time. When this happens, the equation is plotted at lower resolution.

214 out of 237 found this helpful
Have more questions? Submit a request

• GlitchedGraph666

\operatorname{floor}\left(x!y!\right)\sin\left(x!\right)>\sec\left(\operatorname{floor}\left(x!!y!\right)\right)\cos\left(y!\right)

• GlitchedGraph666

\sin\left(x^{\cos\left(y\right)}\right)=\sin\left(\operatorname{floor}\left(x!\right)\right)\cdot\operatorname{floor}\left(\cos\left(y!\right)\right)

\frac{\sin\left(\operatorname{floor}\left(x!y!\right)\right)\tan\left(x!+\operatorname{floor}\left(y!x!\right)\right)}{\sin\left(x!\right)\operatorname{floor}\left(\sin\left(x!y!\right)\right)}<\sin\left(\frac{x!y!+\operatorname{floor}\left(x!+y^{\operatorname{floor}\left(x!\right)}\right)}{\sin\left(y!\right)}\right)\operatorname{floor}\left(\frac{\sin\left(\operatorname{floor}\left(x!\right)\right)}{y!+\sin\left(x^{y!}\right)}\right)

\operatorname{mean}\left(\operatorname{floor}\left(x!\right)y!,\sin\left(x!\right),\operatorname{floor}\left(x!\right)\right)+x!\cdot\operatorname{floor}\left(\sin\left(x^{\operatorname{mean}\left(x,y!,\operatorname{floor}\left(x!+\operatorname{mean}\left(\frac{x!y!}{\operatorname{floor}\left(x!y!\right)}\right)\right)\right)}\right)\right)\cdot\cos\left(\sum_{n=1}^{\operatorname{floor}\left(x\right)}n^{\frac{1}{2}}\right)+x!y!>\sin\left(\frac{x!+\sin\left(\frac{x!}{\operatorname{floor}\left(x!y!\right)}\right)}{\sin\left(x!\right)\cos\left(\frac{x^{\sin\left(x!\right)}}{y^{\cos\left(\operatorname{mean}\left(x,y,200\right)\right)}}\right)}\right)x!\operatorname{floor}\left(\frac{x!+\sin\left(x!\right)\tan\left(x!\right)}{y!+\operatorname{floor}\left(x!\right)}\right)\tan\left(x^{\operatorname{floor}\left(\operatorname{mean}\left(x!,y!\right)\right)}\right)

• GlitchedGraph666

\operatorname{floor}\left(x+y\right)=-1

Looks OK, but brings up the message

• GlitchedGraph666

\ln\left(\operatorname{mean}\left(\frac{\log\left(x!\operatorname{floor}\left(y!\right)\right)}{\operatorname{floor}\left(\ln\left(x!\right)\right)},\frac{\operatorname{median}\left(x!,y!,\operatorname{floor}\left(x!\right),\tan\left(x!\right)\right)}{\operatorname{lcm}\left(\operatorname{floor}\left(x!\sin\left(y\right)\right),\operatorname{floor}\left(y!\cot\left(x\right)\right)\right)},\operatorname{nCr}\left(\operatorname{floor}\left(\frac{x!y!\sin\left(x!\right)}{y!}\cdot5\right),\operatorname{floor}\left(\ln\left(x\right)\right)\right)\right)\right)>\sin\left(\frac{\log_6\left(x!\operatorname{floor}\left(x!\right)\right)}{y}\right)

\operatorname{lcm}\left(\operatorname{floor}\left(\frac{\operatorname{nCr}\left(\operatorname{floor}\left(x^3+\ln\left(y!\right)\right),\operatorname{floor}\left(x^2+\ln\left(y!\right)\right)\right)}{\operatorname{nCr}\left(\operatorname{round}\left(y^3+x!\right),\operatorname{round}\left(y^2+x!\right)\right)}\right),\operatorname{floor}\left(\frac{\sqrt{y^{\tan\left(\log\left(\frac{\operatorname{lcm}\left(\operatorname{floor}\left(x^y+\cos\left(y\right)\right),\operatorname{floor}\left(y^x+\cos\left(x\right)\right)\right)}{\operatorname{lcm}\left(\operatorname{floor}\left(\tan\left(x^2\right)\right),\operatorname{floor}\left(\tan\left(y^3\right)\right)\right)}\right)\right)}}}{\sqrt{x^{\sin\left(\operatorname{mean}\left(x+y^{\cos\left(x\right)},x\cdot y^{\cos\left(x\right)},x+y^{\sin\left(x\right)},x\cdot y^{\sin\left(x\right)}\right)\right)}}}\right)\right)>\operatorname{floor}\left(x+\sin^{-1}\left(\cos\left(\frac{x}{y^{\csc\left(\sqrt{\operatorname{lcm}\left(\operatorname{floor}\left(\log\left(x^{y!}\right)\right),\operatorname{floor}\left(\sqrt{x^{y!}}\right)\right)}\right)}}\right)\right)\right)

• GlitchedGraph666

\frac{\operatorname{lcm}\left(\operatorname{floor}\left(x^y+\sin\left(x\right)\right),\operatorname{floor}\left(y^x+\sin\left(y\right)\right)\right)}{\operatorname{lcm}\left(\operatorname{floor}\left(y\cdot x\cdot\cos\left(x\right)\right),\operatorname{floor}\left(y\cdot x\cdot\cos\left(y\right)\right)\right)}>x\cdot z\cdot y

• GlitchedGraph666

\frac{\operatorname{lcm}\left(\operatorname{floor}\left(x^y+\sin\left(x\right)\right),\operatorname{floor}\left(y^x+\sin\left(y\right)\right)\right)}{\operatorname{lcm}\left(\operatorname{floor}\left(y\cdot x\cdot\cos\left(x\right)\right),\operatorname{floor}\left(y\cdot x\cdot\cos\left(y\right)\right)\right)}>x\cdot z\cdot y

• GlitchedGraph666

\sqrt[x]{y}\cdot x+\sqrt{\left|\sin\left(x\right)\right|}>\cos\left(x\cdot y^{\sin\left(x\right)}\right)

• GlitchedGraph666

\gcd\left(\operatorname{lcm}\left(\operatorname{floor}\left(x!^{y!}+\operatorname{mean}\left(x!,\sin\left(y!\right),\cos\left(x!\right)\right)\right),\operatorname{floor}\left(\operatorname{lcm}\left(\operatorname{floor}\left(\frac{x!}{\cos\left(y!\right)\cdot\sin\left(x\right)!}\right),\operatorname{floor}\left(\frac{y!}{x!}\right)\right)\right)\right),\operatorname{lcm}\left(\operatorname{floor}\left(\ln\left(\sqrt[x]{x!}\right)\right),\operatorname{floor}\left(x\sqrt{y!}+\sqrt[\sin\left(x\right)^x\cdot x^y]{x!y!}\right)\right)\right)>\sin\left(\frac{x!+\sin\left(y!\right)}{\cos\left(x\cdot y!\right)}\right)

or 2000xy-10^{xy}=10^4

• GlitchedGraph666

\tan\left(\frac{x^2}{\sin\left(y^{\operatorname{lcm}\left(\operatorname{floor}\left(x^2\right),\operatorname{floor}\left(y^2\right)\right)}\right)}\right)=\sin\left(\operatorname{lcm}\left(\operatorname{floor}\left(x^2\right),\operatorname{floor}\left(y^2\right)\right)\right)

• nobert singh

this looks good

\tan\left(\frac{x}{y}\right)=\sin\left(x\right)

• GlitchedGraph666

\frac{\frac{\sin\left(x\right)}{0.1}\cos\left(y\right)}{\sin\left(x^2\right)}=\frac{\cos\left(x\right)}{\sin\left(y\right)}+\frac{\frac{\sin\left(y\right)}{\cos\left(x\right)}}{\cos\left(y^2\right)}

• GlitchedGraph666

\frac{\ln\left(x\cdot\frac{y}{\cos\left(y!\right)}\right)}{\sin\left(x+\sqrt{\sin\left(y!\right)}\right)}+\frac{\frac{\operatorname{lcm}\left(\operatorname{floor}\left(x!+\sin\left(y!\right)\right),\operatorname{floor}\left(\cos\left(y!\right)\right)\right)}{\prod_{n=1}^{\operatorname{floor}\left(\sqrt{x}\right)}\frac{n}{\sin\left(y\right)}}+\sum_{n=1}^{\operatorname{floor}\left(y\right)}\frac{n\left(n+1\right)}{2}}{\sin\left(x!+y!\right)^2+\tan\left(\frac{x^2}{\sin\left(x+y^{\sin\left(\frac{x}{\cos\left(x^{\pi}\right)}\right)}\right)}\right)+\frac{\sin\left(\frac{x}{2^x}+\operatorname{mean}\left(\operatorname{mean}\left(x+\csc\left(y\right),\sin\left(x^2\right),x^2,y^3\right),\operatorname{floor}\left(2x\right),3^x,y\right)\right)}{\operatorname{nCr}\left(\operatorname{floor}\left(\sin\left(\frac{y}{\operatorname{floor}\left(x!y!\right)}\right)\right),\operatorname{floor}\left(x!+\sin\left(y!\right)\right)\right)}}>\frac{\frac{\frac{\cos\left(\frac{\sin\left(x^3\right)}{y}\right)x^2}{\tan\left(y^2\right)}}{\sin\left(2y\right)^{\cos\left(x\right)}}}{\sin\left(x^2+\cos\left(y^2\right)\right)}+\frac{\frac{\frac{\sin\left(\sqrt{\frac{x!}{y}}\right)}{\operatorname{lcm}\left(\operatorname{floor}\left(\cos\left(2^x\right)\right),\operatorname{floor}\left(2^y\right)\right)}}{\operatorname{mean}\left(x,\cos\left(x\right),\cos\left(y\right),y!\right)}}{\ln\left(x^2+y^2\right)-\sum_{n=1}^{\operatorname{floor}\left(x+\sin\left(y\right)\right)}n^{\frac{3}{2}}}+\operatorname{nPr}\left(\operatorname{floor}\left(x^2\right),\operatorname{floor}\left(y^2\right)\right)

It was rendered quickly. at lowest quality

• GlitchedGraph666

https://www.desmos.com/calculator/gegcwmebqe

this will break the universe

i broke the mechiejioxfjierop wher/lo06ypkhtg i cjmioxrk

i cnnnd repop optptopewg9uclt8ruickotuik9;ilp

• GlitchedGraph666

desmos willl f******edmfoemdeopemdopemdeop

oh crud

• First Last

sin(x^y)=sin(y^x) works.

• First Last

Another time the fine detail is unresolved: tan(x/y)=cot(y/x)

• GlitchedGraph666

\left(\frac{\sin\left(x\cdot\frac{y}{\ln\left(x\right)}\right)}{\operatorname{mean}\left(x\cdot y,x,y,x^2\right)}+\frac{x^2}{\sin\left(x^2\right)}\right)^{\cos\left(x^{\sin\left(y+2\right)}\right)\cdot\frac{2}{x}}+\frac{\operatorname{median}\left(x,y^2,\ln\left(x^2\right)\right)+\prod_{n=1}^{\operatorname{floor}\left(\sum_{z=2}^{\operatorname{floor}\left(x^2\right)}\sin\left(z^2\right)\right)}\cos\left(n^x\right)}{\cos\left(x^2+y^2\right)+\sum_{k=1}^{\operatorname{floor}\left(x^2\right)}k+y^2}+\sin\left(\frac{\frac{\left(\frac{x^2}{\operatorname{gcf}\left(\operatorname{floor}\left(x\right),\operatorname{floor}\left(y\right)\right)}+y\right)}{\csc\left(x^2+y^2\right)}\cdot\sec\left(x^{2^{x^{2^{y^{2^x}}}}}\right)}{\operatorname{nCr}\left(\operatorname{floor}\left(\cos\left(\frac{x}{x^2+y}\right)\right),\operatorname{floor}\left(\frac{x}{\sin\left(y^2\right)}\right)\right)}\right)^{2^{\ln\left(x+y^{2^{\cos\left(x^{3^{\cos\left(x^{4^{\cos\left(x^{5^{\cos\left(x!\right)}}\right)}}\right)}}\right)}}\right)}}+\frac{\sin\left(\frac{x!^2}{y^2}\right)+y^2}{\cos\left(x^2\right)\cdot100\%\operatorname{of}y^2}>\sin\left(\tan\left(x^2\right)\right)+\left(\frac{\sqrt{\operatorname{abs}\left(x!^2+y^2\right)}}{x^2+y!^2}\right)^{\frac{\ln\left(\sqrt[3^{\sin\left(x\right)}]{\cos\left(x!\right)^3}\right)}{\sin\left(\operatorname{lcm}\left(\operatorname{floor}\left(x!\right),\operatorname{floor}\left(y\right)\right)\right)}}+\sin\left(\frac{\log_{3+x}\left(x^{\sin\left(y^2\right)}\right)!}{\operatorname{nPr}\left(\operatorname{floor}\left(x\right),\operatorname{floor}\left(y\right)\right)}\right)

Calculator: I won't even try.

• First Last

This equation also works: \prod_{n=\left|y\right|}^{\left|y\right|+1}n=\sum_{n=x}^{\left|x\right|+1}n

• GlitchedGraph666

\cos\left(\ln\left(\left|x\right|\right)\cdot y\right)\cdot\sin\left(\ln\left(\left|y\right|\right)\cdot x\right)=0

• GlitchedGraph666

\cos\left(\ln\left(\left|x\right|\right)\cdot y\right)\cdot\sin\left(\ln\left(\left|y\right|\right)\cdot x\right)=\sin\left(\ln\left(\left|x\right|\right)\cdot y\right)\cdot\cos\left(\ln\left(\left|y\right|\right)\cdot x\right)

• Amitter2002npl

sin(x^y)=cos(y^x)

• Etinosa Ogbeide

\cos\left(x+y\right)=\cos\left(x\right)\cdot\cos\left(y\right)-\sin\left(x\right)\cdot\sin\left(y\right) is crazy

• 349184

y^3=\tan\left(x^2\right)+6   is cool too!

• 349184

\frac{\left(\cos\left(\frac{\sqrt{\pi x}}{xy!!!}\right)\tan\left(\left|\frac{y!\pi!}{x!}\right|\right)^{y!^{-\pi}}\right)}{\sin\left(x^2\right)}=\tan\left(xy\sqrt{\pi}\right)

MWAHAHAHAHAHAHA!!!!!!!!!!!!!!!!!!!!!!!!

• 349184

\sqrt{\sqrt{\sqrt{x}}}=\tan\left(x^{x!y!\pi!}\right)

Even more...

• GlitchedGraph666

\sqrt{\sqrt{\left|x^3\right|\cdot\tan\left(y\right)}}=\frac{\sin\left(y!+x!\right)}{\tan\left(x!y!\right)}

\operatorname{gcf}\left(\operatorname{floor}\left(x!\right),\operatorname{floor}\left(y!\right)\right)=2

\frac{\ln\left(x!\right)}{\sin\left(y!\right)}\cdot\cos\left(x!y!\right)=\frac{\sin\left(x!y!\right)}{\ln\left(y!\right)}

\operatorname{lcm}\left(\operatorname{floor}\left(\frac{x}{\sin\left(y\right)}\right),\operatorname{floor}\left(\frac{y}{\cos\left(x\right)}\right)\right)=x\cdot y

• GlitchedGraph666

\frac{\ln\left(x\cdot\frac{y}{\cos\left(y!\right)}\right)}{\sin\left(x+\sin\left(y!\right)\right)}+\frac{\operatorname{lcm}\left(\operatorname{floor}\left(x+\sin\left(y\right)\right),\operatorname{floor}\left(\cos\left(y\right)\right)\right)+\sum_{n=1}^{\operatorname{floor}\left(y\right)}\frac{n\left(n+1\right)}{3}}{\tan\left(\frac{x^2}{\sin\left(x+y\right)}\right)+\frac{\sin\left(\frac{y}{x^2}+\operatorname{mean}\left(\operatorname{mean}\left(x+\csc\left(y\right),\sin\left(x^2\right)\right),\operatorname{floor}\left(2x\right),3^x,y\right)\right)}{\operatorname{nCr}\left(\operatorname{floor}\left(\sin\left(\frac{y}{\operatorname{floor}\left(x!y!\right)}\right)\right),\operatorname{floor}\left(x+\sin\left(y\right)\right)\right)}}>\frac{\cos\left(\frac{\sin\left(x^2\right)}{y}\right)x^2}{\sin\left(x^2+\cos\left(y^2\right)\right)}+\frac{\sin\left(\sqrt{\frac{x!}{y}}\right)}{\ln\left(x^2+y^2\right)^{\frac{3}{2}}}

• That Random Person

\frac{6-x-x^2}{x^2-9}=-\frac{x-2}{x-3}

• GlitchedGraph666

\operatorname{median}\left(x,y,x^2,y^2,\sin\left(x\right),\cos\left(y\right),y+2,y^2,\sin\left(y\right),\tan\left(x+y\right),x\cdot y\right)=x