Unresolved Detail In Plotted Equations

Sometimes the calculator detects that an equation is too complicated to plot perfectly in a reasonable amount of time. When this happens, the equation is plotted at lower resolution.

Have more questions? Submit a request

925 Comments

  • 0
    Avatar
    22yatzac

    x^a+y^a=1

    when a is less than -1

  • 1
    Avatar
    Thurston Domina

    \sin\left(\frac{x}{y}\right)=\cos\left(x\cdot y\right)

  • 1
    Avatar
    Thurston Domina
  • 1
    Avatar
    Thurston Domina
    Edited by Thurston Domina
  • 1
    Avatar
    Thurston Domina
  • 1
    Avatar
    Thurston Domina
  • 1
    Avatar
    Thurston Domina
  • 1
    Avatar
    Thurston Domina
  • 1
    Avatar
    mATT C
  • 1
    Avatar
    Tanksear Industries

    \tan\left(\log\left(\csc\left(\operatorname{floor}\left(\cot\left(x\right)\right)\right)\right)\right)=\operatorname{mod}\left(x,x\right)

    It says it, but if you can find the lines themselves, I commend you.

    *You need to zoom out a couple times*

    Edited by Tanksear Industries
  • 0
    Avatar
    mATT C

    @Tanksear Industries

    I see them.

  • 0
    Avatar
    Tanksear Industries

    Where? Maybe I didn't look in the right place (or maybe my computer can't render it)

    Edited by Tanksear Industries
  • 0
    Avatar
    mATT C

    @Tanksear Industries

  • 0
    Avatar
    mATT C
  • 0
    Avatar
    22yatzac

    \sin xx=\cos2y

  • 0
    Avatar
    Zombie Chicken

    y = y!/x! 

  • 0
    Avatar
    GlitchedGraph666

    Infinite \sin\left(x+y^x-x^2\right)=\cos\left(xy+y^2\right)

  • 0
    Avatar
    GlitchedGraph666

    Deadly Equations that can destroy your computer:

    \sin\left(x^2+y^2-x+\sin\left(x^2\right)+\tan\left(x^{\sin\left(y\right)}\right)\right)=\cos\left(x^2\right)

    \sin\left(x^2\right)\cdot\sqrt{\pi+\sin\left(x^2\right)}+y\cdot\sin\left(x^y+x^{\sin\left(y\right)}\right)=\cos\left(x^{\cos\left(x\right)}+y\right)

    \log\left(x^y\right)\cdot\sin\left(x^{\sin\left(y\right)}-\cos\left(x^2\right)\right)=\sin\left(x^{\sin\left(x\right)}\right)+\sin\left(y\right)

    \sin\left(x^{\cos\left(y\right)}+x^2-y^2\cdot\frac{x}{y^2}\right)=\cos\left(x^{\sin\left(y\right)}\right)

    \tan\left(x\cdot y^{\sin\left(x\right)}\right)=\sin\left(x!y!\right)\cdot\sin\left(x+y\right)

    \ln\left(x!\right)\cdot y\sin\left(x^y\right)=\sin\left(x^{\cos\left(y\right)}\right)

    \cos\left(x^{\sin\left(y\right)}\cdot\log\left(x^y\right)\right)=\cos\left(\ln\left(x\cdot y^x\right)\right)

    \sin\left(x\cdot\cos\left(y^2\right)+x^2\right)=\sin\left(\ln\left(x^y\right)\right)

    \sin\left(yx^2\right)=\sin\left(y^2+x^2\right)+\tan\left(y^2\right)

     

    Combine all of them for death!!!

    https://www.desmos.com/calculator/08pvl7xy1d

  • 0
    Avatar
    Zapyourtumor3

    Even though this graph seems like there is unresolved detail, it doesn't say so:

    https://www.desmos.com/calculator/iwi50btnpd

  • 0
    Avatar
    22yatzac

    Tupper's self-referential formula

    \frac{1}{2}<\left|\operatorname{mod}\left(2^{\left(-17\left|x\right|-\operatorname{mod}\left(y,17\right)\right)}\left|\frac{y}{17}\right|,2\right)\right|

  • 0
    Avatar
    Harry Lennox

    \frac{\cos x}{\sin y}=\cos x^y

  • 0
    Avatar
    Harry Lennox

    \sin\left(x!+y!\right)=0

  • 0
    Avatar
    Harry Lennox

    \frac{\sin\left(xy\right)+\cos\left(xy\right)+\tan\left(xy\right)+\sec\left(xy\right)+\csc\left(xy\right)+\cot\left(xy\right)}{\frac{e^{\sin x}}{\frac{e^{\cos x}}{e^{\tan x}}}}=3

    \frac{x!}{y!}=0

    \frac{x^{\frac{e!}{y!}}}{\sin\left(\frac{x!}{y!^{e!}}\right)}=0

    y!<1

    y!x!<1

    \frac{\left(\sin\left(x\right)\cos\left(x\right)\tan\left(x\right)\sec\left(x\right)\csc\left(x\right)\cot\left(x\right)\right)^{x!^{y!}}}{\frac{x!}{y!}}\ge x!y!

    \operatorname{mod}\left(\sin\left(x^3\right),\sin\left(y^3\right)\right)=\operatorname{floor}\left(\sin x\right)

  • 0
    Avatar
    Javauser101

    x^{\frac{\cos\left(\frac{x^2}{y^2}\right)}{\tan\left(\frac{x^2}{y^2}\right)}}=x^2\cdot y^2

  • 0
    Avatar
    Harry Lennox

    \frac{\operatorname{floor}\left(x\right)}{\operatorname{floor}\left(e^{\sin\left(x\right)\cos\left(y\right)}\right)}=\operatorname{floor}\left(x\right) is very interesting.

  • 0
    Avatar
    TheRath27

    y=\sec xy

  • 0
    Avatar
    William Gross

    type in these four IN THIS ORDER on one graph

    and watch as you see the entire universe explode

    also you computer might possibly puke on you :)             so be careful

    tan(y)^2=sin(x)^2

    sin(y)^2=cos(x)^2

    tan(x/y)=x

     

    sin(x^2)=cos(y^2)

  • 0
    Avatar
    Thomashill

    y\cdot x=\frac{x^2}{1y}+\frac{12^{2^y}\pi^{yx}}{yxy}

  • -2
    Avatar
    Tyler Hil

    or y=your mom gay

  • 0
    Avatar
    Tyler Hil

    lol

Please sign in to leave a comment.
Powered by Zendesk