# Unresolved Detail In Plotted Equations

Sometimes the calculator detects that an equation is too complicated to plot perfectly in a reasonable amount of time. When this happens, the equation is plotted at lower resolution.

200 out of 221 found this helpful
Have more questions? Submit a request

• 22yatzac

x^a+y^a=1

when a is less than -1

• Thurston Domina

\sin\left(\frac{x}{y}\right)=\cos\left(x\cdot y\right)

• Thurston Domina
• Thurston Domina
Edited by Thurston Domina
• Thurston Domina
• Thurston Domina
• Thurston Domina
• Thurston Domina
• mATT C
• Tanksear Industries

\tan\left(\log\left(\csc\left(\operatorname{floor}\left(\cot\left(x\right)\right)\right)\right)\right)=\operatorname{mod}\left(x,x\right)

It says it, but if you can find the lines themselves, I commend you.

*You need to zoom out a couple times*

Edited by Tanksear Industries
• mATT C

@Tanksear Industries

I see them.

• Tanksear Industries

Where? Maybe I didn't look in the right place (or maybe my computer can't render it)

Edited by Tanksear Industries
• mATT C

@Tanksear Industries

• mATT C
• 22yatzac

\sin xx=\cos2y

• Zombie Chicken

y = y!/x!

• GlitchedGraph666

Infinite \sin\left(x+y^x-x^2\right)=\cos\left(xy+y^2\right)

• GlitchedGraph666

\sin\left(x^2+y^2-x+\sin\left(x^2\right)+\tan\left(x^{\sin\left(y\right)}\right)\right)=\cos\left(x^2\right)

\sin\left(x^2\right)\cdot\sqrt{\pi+\sin\left(x^2\right)}+y\cdot\sin\left(x^y+x^{\sin\left(y\right)}\right)=\cos\left(x^{\cos\left(x\right)}+y\right)

\log\left(x^y\right)\cdot\sin\left(x^{\sin\left(y\right)}-\cos\left(x^2\right)\right)=\sin\left(x^{\sin\left(x\right)}\right)+\sin\left(y\right)

\sin\left(x^{\cos\left(y\right)}+x^2-y^2\cdot\frac{x}{y^2}\right)=\cos\left(x^{\sin\left(y\right)}\right)

\tan\left(x\cdot y^{\sin\left(x\right)}\right)=\sin\left(x!y!\right)\cdot\sin\left(x+y\right)

\ln\left(x!\right)\cdot y\sin\left(x^y\right)=\sin\left(x^{\cos\left(y\right)}\right)

\cos\left(x^{\sin\left(y\right)}\cdot\log\left(x^y\right)\right)=\cos\left(\ln\left(x\cdot y^x\right)\right)

\sin\left(x\cdot\cos\left(y^2\right)+x^2\right)=\sin\left(\ln\left(x^y\right)\right)

\sin\left(yx^2\right)=\sin\left(y^2+x^2\right)+\tan\left(y^2\right)

Combine all of them for death!!!

https://www.desmos.com/calculator/08pvl7xy1d

• Zapyourtumor3

Even though this graph seems like there is unresolved detail, it doesn't say so:

https://www.desmos.com/calculator/iwi50btnpd

• 22yatzac

Tupper's self-referential formula

\frac{1}{2}<\left|\operatorname{mod}\left(2^{\left(-17\left|x\right|-\operatorname{mod}\left(y,17\right)\right)}\left|\frac{y}{17}\right|,2\right)\right|

• Harry Lennox

\frac{\cos x}{\sin y}=\cos x^y

• Harry Lennox

\sin\left(x!+y!\right)=0

• Harry Lennox

\frac{\sin\left(xy\right)+\cos\left(xy\right)+\tan\left(xy\right)+\sec\left(xy\right)+\csc\left(xy\right)+\cot\left(xy\right)}{\frac{e^{\sin x}}{\frac{e^{\cos x}}{e^{\tan x}}}}=3

\frac{x!}{y!}=0

\frac{x^{\frac{e!}{y!}}}{\sin\left(\frac{x!}{y!^{e!}}\right)}=0

y!<1

y!x!<1

\frac{\left(\sin\left(x\right)\cos\left(x\right)\tan\left(x\right)\sec\left(x\right)\csc\left(x\right)\cot\left(x\right)\right)^{x!^{y!}}}{\frac{x!}{y!}}\ge x!y!

\operatorname{mod}\left(\sin\left(x^3\right),\sin\left(y^3\right)\right)=\operatorname{floor}\left(\sin x\right)

• Javauser101

x^{\frac{\cos\left(\frac{x^2}{y^2}\right)}{\tan\left(\frac{x^2}{y^2}\right)}}=x^2\cdot y^2

• Harry Lennox

\frac{\operatorname{floor}\left(x\right)}{\operatorname{floor}\left(e^{\sin\left(x\right)\cos\left(y\right)}\right)}=\operatorname{floor}\left(x\right) is very interesting.

• TheRath27

y=\sec xy

• William Gross

type in these four IN THIS ORDER on one graph

and watch as you see the entire universe explode

also you computer might possibly puke on you :)             so be careful

tan(y)^2=sin(x)^2

sin(y)^2=cos(x)^2

tan(x/y)=x

sin(x^2)=cos(y^2)

• Thomashill

y\cdot x=\frac{x^2}{1y}+\frac{12^{2^y}\pi^{yx}}{yxy}

• Tyler Hil