Unresolved Detail In Plotted Equations

Sometimes the calculator detects that an equation is too complicated to plot perfectly in a reasonable amount of time. When this happens, the equation is plotted at lower resolution.

Have more questions? Submit a request

875 Comments

  • 0
    Avatar
    247556
  • 0
    Avatar
    Danilbutygin3

    y=((x^y)-(y^x)((y)^(x^y)-(y^x))((x^y)-(y^x))((x)^(x^y)-(y^x))

  • 0
    Avatar
    Ianskot492

    Thank you all for making it easier to break my computer!

  • 0
    Avatar
    Dturnley Ames

    (x(10^(floor(log(y))+1))+y)^(xy)=1 Breaks this too (this is partially concatonation)

  • 0
    Avatar
    CHRIS WALSH

    Your mission:
    Break Desmos

    Mission complete:

    $\left(\frac{\left(\frac{\left(\frac{\cos\left(\frac{\left(\left(\frac{\left(\frac{\left(\left(x+y\right)!\right)^2}{\left(x-y\right)!}\right)!}{\left(\frac{\tan\left(y\right)}{\cos\left(x\right)}\right)!}\right)^2\right)!}{\frac{\left(\tan^{-1}\left(x^2+y^3\right)^3\right)!}{\tan\left(\frac{\left(y!+x!\right)}{\cos\left(y!+x!\right)}\right)}}\right)}{\frac{\left(\left(\frac{\left(\tan\left(x!+y^2\right)\right)^2}{\tan\left(x!+y!+\frac{x^2}{y!}+\frac{y^2}{x!}\right)}\right)^{\cos\left(x!^2+y!^2\right)!}\right)^{\left(x+y\right)!}}{\frac{x!}{y!}}}\right)!}{\left(\frac{x!^2}{y!^3}\right)^{\frac{\cos\left(x\right)}{\sin\left(x!+\frac{2}{x!+\frac{y!^2}{x!+\frac{y!^2}{x!+\frac{y!^2}{x!+\frac{y!^2}{x!+y!^2}}}}}\right)}}}\right)}{x!^{2y!}+\frac{\left(\frac{\left(\frac{\cos\left(\frac{\left(\left(\frac{\left(\frac{\left(\left(x+y\right)!\right)^2}{\left(x-y\right)!}\right)!}{\left(\frac{\tan\left(y\right)}{\cos\left(x\right)}\right)!}\right)^2\right)!}{\frac{\left(\tan^{-1}\left(x^2+y^3\right)^3\right)!}{\tan\left(\frac{\left(y!+x!\right)}{\cos\left(y!+x!\right)}\right)}}\right)}{\frac{\left(\left(\frac{\left(\tan\left(x!+y^2\right)\right)^2}{\tan\left(x!+y!+\frac{x^2}{y!}+\frac{y^2}{x!}\right)}\right)^{\cos\left(x!^2+y!^2\right)!}\right)^{\left(x+y\right)!}}{\frac{x!}{y!}}}\right)!}{\left(\frac{x!^2}{y!^3}\right)^{\frac{\cos\left(x\right)}{\sin\left(x!+\frac{2}{x!+\frac{y!^2}{x!+\frac{y!^2}{x!+\frac{y!^2}{x!+\frac{y!^2}{x!+y!^2}}}}}\right)}}}\right)}{x!^{2y!}+\frac{\left(\frac{\left(\frac{\cos\left(\frac{\left(\left(\frac{\left(\frac{\left(\left(x+y\right)!\right)^2}{\left(x-y\right)!}\right)!}{\left(\frac{\tan\left(y\right)}{\cos\left(x\right)}\right)!}\right)^2\right)!}{\frac{\left(\tan^{-1}\left(x^2+y^3\right)^3\right)!}{\tan\left(\frac{\left(y!+x!\right)}{\cos\left(y!+x!\right)}\right)}}\right)}{\frac{\left(\left(\frac{\left(\tan\left(x!+y^2\right)\right)^2}{\tan\left(x!+y!+\frac{x^2}{y!}+\frac{y^2}{x!}\right)}\right)^{\cos\left(x!^2+y!^2\right)!}\right)^{\left(x+y\right)!}}{\frac{x!}{y!}}}\right)!}{\left(\frac{x!^2}{y!^3}\right)^{\frac{\cos\left(x\right)}{\sin\left(x!+\frac{2}{x!+\frac{y!^2}{x!+\frac{y!^2}{x!+\frac{y!^2}{x!+\frac{y!^2}{x!+y!^2}}}}}\right)}}}\right)}{x!^{2y!}+\frac{\left(\frac{\left(\frac{\cos\left(\frac{\left(\left(\frac{\left(\frac{\left(\left(x+y\right)!\right)^2}{\left(x-y\right)!}\right)!}{\left(\frac{\tan\left(y\right)}{\cos\left(x\right)}\right)!}\right)^2\right)!}{\frac{\left(\tan^{-1}\left(x^2+y^3\right)^3\right)!}{\tan\left(\frac{\left(y!+x!\right)}{\cos\left(y!+x!\right)}\right)}}\right)}{\frac{\left(\left(\frac{\left(\tan\left(x!+y^2\right)\right)^2}{\tan\left(x!+y!+\frac{x^2}{y!}+\frac{y^2}{x!}\right)}\right)^{\cos\left(x!^2+y!^2\right)!}\right)^{\left(x+y\right)!}}{\frac{x!}{y!}}}\right)!}{\left(\frac{x!^2}{y!^3}\right)^{\frac{\cos\left(x\right)}{\sin\left(x!+\frac{2}{x!+\frac{y!^2}{x!+\frac{y!^2}{x!+\frac{y!^2}{x!+\frac{y!^2}{x!+y!^2}}}}}\right)}}}\right)}{x!^{2y!}+\frac{\left(\frac{\left(\frac{\cos\left(\frac{\left(\left(\frac{\left(\frac{\left(\left(x+y\right)!\right)^2}{\left(x-y\right)!}\right)!}{\left(\frac{\tan\left(y\right)}{\cos\left(x\right)}\right)!}\right)^2\right)!}{\frac{\left(\tan^{-1}\left(x^2+y^3\right)^3\right)!}{\tan\left(\frac{\left(y!+x!\right)}{\cos\left(y!+x!\right)}\right)}}\right)}{\frac{\left(\left(\frac{\left(\tan\left(x!+y^2\right)\right)^2}{\tan\left(x!+y!+\frac{x^2}{y!}+\frac{y^2}{x!}\right)}\right)^{\cos\left(x!^2+y!^2\right)!}\right)^{\left(x+y\right)!}}{\frac{x!}{y!}}}\right)!}{\left(\frac{x!^2}{y!^3}\right)^{\frac{\cos\left(x\right)}{\sin\left(x!+\frac{2}{x!+\frac{y!^2}{x!+\frac{y!^2}{x!+\frac{y!^2}{x!+\frac{y!^2}{x!+y!^2}}}}}\right)}}}\right)}{x!^{2y!}}}}}}\right)!=\tan\left(\left(\frac{\left(\frac{\cos\left(y\right)}{\tan\left(x\right)}\right)!}{\left(\frac{\left(\left(x-y\right)!\right)^2}{\left(x+y\right)!}\right)!}\right)!\right)$

     

  • -1
    Avatar
    Transendium GD

    lol what about this

    y^2=x^2*\cos(x^2+y^2)x^2*\sin(x^2+y^2)

  • -1
    Avatar
    David Robillard

    y!=\sin\left(x!\right)+\cos\left(x!\right)+\tan\left(x!\right)

  • 1
    Avatar
    Owen J
  • 0
    Avatar
    zachary h

    ^2+y^2=234\cos\left(x^2y^2\right)

     

    This is awesome.

  • 0
    Avatar
    Ianskot492

    https://www.desmos.com/calculator/cziy3i178i

     

    computer almost died

    Have fun!

     

  • 0
    Avatar
    Sayed Abdullah Qutb (SAQ)

    e^-x=-1

  • 0
    Avatar
    Owen Korver

    sin(cos(tan(csc(sec(cot(log(x)))))))=sin(cos(tan(csc(sec(cot(log(y)))))))

  • 0
    Avatar
    Blue DragonFire

    log(xy)=log(x)+log(y), oh noes.

  • 0
    Avatar
    Ianskot492

    Checkerboard  \sin\left(x\right)\cdot\cos\left(y\right)\tan\left(y\right)=0

    (note: not actually a computer-breaker, but fun anyway)

     

  • 0
    Avatar
    23ccamarena

    y=\cos\left(\pi\left|xy^2\right|\right)

  • 0
    Avatar
    Ssong1

    sin(cos(tan(x)))=tan(cos(sin(y)))

  • 0
    Avatar
    Ssong1

    \sin\left(x^y\right)=\cos\left(y^x\right)

  • 0
    Avatar
    nyerka nyerka

    \frac{\cos\left(\frac{x}{y}^2\right)}{\tan\left(e^2\right)}=\frac{\frac{\sqrt{\cos\left(\frac{e}{x}\right)}}{\cos\left(x\right)y}}{\sin\left(\frac{x}{\frac{y^2}{\sin\left(xy\right)}}\right)}

  • 0
    Avatar
    nyerka nyerka

    y^2=x^2\cdot\cos\left(x^2+y^2\right)\cdot\sin\left(x^2+y^2\right)+\tan\left(x^2+y^2\right)\cdot y^2

  • 0
    Avatar
    nyerka nyerka
  • 0
    Avatar
    DarkfangGaming

    I just combined some stuff and got this beautiful work of art... sorta.

    https://www.desmos.com/calculator/jzr1uwpgnm 

  • 0
    Avatar
  • 0
    Avatar
  • 0
    Avatar
    BurgerPants

    https://www.desmos.com/calculator/qo11mygbtk 

    I think desmos hates me now

     

  • 0
    Avatar
    Faelynn Allegro

    Sin(x/y)=x or sin(x/y)=y are absolute messes but also works of art

  • 0
    Avatar
    Dmytro Hlukhaniuk

    That`s not the case with unresolved pattern or detail, but looks cool!

    \left(x-1y\right)\left(x+1\right)\left(xy-2y\right)\left(yx-3\right)\left(xy^2-2\right)=2

  • 0
    Avatar
    David Robillard

    x^{\operatorname{floor}\left(y\right)}=y^{\operatorname{floor}\left(x\right)}

  • 0
    Avatar
    SuperCoolDude04

    e^(sin(x)+cos(y))=sin(e^(x+y)) is crazy

  • 1
    Avatar
    Davin Sivertson

    \cos\left(\sin\left(x\cdot y^3\right)\right)=\csc\left(\tan\left(\sec\left(x+y^{13}\right)\right)\right) Works pretty well.

     

  • 1
    Avatar
    The Fruit Roll-Up

    This one breaks it, but doesn't crash your computer.

    y=x^4-\frac{2x^3}{y}\cdot\int_y^{10y}\sin\left(x^2\right)\ dx

    You can't type in any equations after you've put this in, even if you remove the equation. You have to refresh to get Desmos to work again...

Please sign in to leave a comment.
Powered by Zendesk