# Unresolved Detail In Plotted Equations

Sometimes the calculator detects that an equation is too complicated to plot perfectly in a reasonable amount of time. When this happens, the equation is plotted at lower resolution.

192 out of 212 found this helpful
Have more questions? Submit a request

• N00BM4TH

For example: x^y=y^x

• David Summa

sin(x*y) = cos(x*y) takes it to a whole new level.

• marcus druckman

$y=\frac{\left(\frac{x^2}{y}\right)}{\left|\left(\frac{x^2}{y^2}\right)\right|}$ is a mess!!!

• Tom Lynd

(sinx)^y=x^siny

• Jacob Claassen

sin(x/y)=4

• Isaac Schultz

cos(x)+sin(x*y)=cos(y*x)+sin(y)

• Isaac Schultz

y^2=x^2*sin(x^2+y^2)

• Isaac Schultz

(x+y)/(x*y)=sin(x)+cos(y)

• Isaac Schultz

cos(x)+sin(y)=0

• Rishi Sharma

just sin y=cosx will do the work.......

• Sean Wilson

tan(x/y)=x works pretty well

• Sean Wilson

$\tan \left(\frac{x}{y}\right)=\cos \left(\frac{x}{y}\right)$

$\tan \left(x\cdot y\right)=\sqrt{y}$

$\frac{\cos \left(\frac{x}{y}\right)}{\tan \left(\frac{x}{y}\right)}=x\cdot y$

$\tan \left(\frac{x}{y}\right)=\tan \left(xy\right)$

A few others...

• Andrew Held

$0.5=\left(\cos \left(x\right)+\cos \left(y\sin \left(\frac{\pi }{5}\right)+x\cos \left(\frac{\pi }{5}\right)\right)+\cos \left(y\sin \left(\frac{2\pi }{5}\right)+x\cos \left(\frac{2\pi }{5}\right)\right)+\cos \left(y\sin \left(\frac{3\pi }{5}\right)+x\cos \left(\frac{3\pi }{5}\right)\right)+\cos \left(y\sin \left(\frac{4\pi }{5}\right)+x\cos \left(\frac{4\pi }{5}\right)\right)\right)$

Nice looking graph, but apparently it has unresolved fine detail.

• N00BM4TH

https://www.desmos.com/calculator/sdcf8my7a0 could be something, Adjustable fine detail missing! =D

• Bob Deen

x^2=sin(xy^2)

• Jose Luis Nunez

x^(ln(y)) = y^(ln(x)) opens a hole in the universe, apparently.

• Bob Deen

sin(x^2)=cos(y^2)  you can guess what that does.

• Bob Deen

and if you want to combine my two comments together, sin(yx^2)=cos(xy^2)  [it is really complicated]

• Ciccio Mostro Vannella

$-\frac{1}{2}\cos x^2+x\cos \left(e^{\sin x}+2x\left(\sin y\right)\right)=0$ this too is too much complicated....

• Paul Medina

tan(y)² = sin(x)²

Super crazy!

• Sean Wilson

$\tan x^y=\tan y^x$ Takes a while even at low resolution!

• Sean Wilson

$\cos xy=\frac{\ln \frac{y}{x}}{\cos xy}$

$\tan ay=\sin bx$  <<< Adjustable insanity!

$\frac{\tan ay}{\sin bx}=\frac{\sin bx}{\tan ay}$  <<< Adjustable Insanity 2!

$\cos xy=\sin xy$

$\ln x=\frac{\ln y}{\cos x}$

$\frac{\ln x}{\ln y}=\frac{\sin y}{\cos x}$

$\left(\sin x\right)\cdot \sin y=\frac{xy}{\sin x}$      <<< Zoom Out A Lot For This One

$\cos xy=\frac{\sin xy}{x}$

$\tan \left(\cos \left(\sin x\right)\right)=\tan \left(\cos \left(\sin y\right)\right)$

$\frac{\tan x}{\frac{\sin y}{\left(\tan x\right)\cdot \sin y}}=\frac{\sin y}{\left(\tan x\right)\cdot \sin y}$

And now, the holy mother of equations, this:                                                                                   (Calculator can't even do this one!)

$\frac{\frac{\tan \left(\cos \left(\sin x\right)\right)}{\left(\cos xy\right)\cdot \frac{\ln \frac{y}{x}}{\cos xy}}}{\frac{\tan \left(\cos \left(\sin x\right)\right)}{\left(\cos xy\right)\cdot \frac{\ln \frac{y}{x}}{\cos xy}}\cdot \frac{\frac{\tan \left(\cos \left(\sin y\right)\right)}{\left(\cos xy\right)\cdot \frac{\sin xy}{x}}}{\left(\cos xy\right)\cdot \frac{\sin xy}{x}}}=\frac{\frac{\tan \left(\cos \left(\sin y\right)\right)}{\left(\cos xy\right)\cdot \frac{\sin xy}{x}}}{\left(\cos xy\right)\cdot \frac{\sin xy}{x}}$

• rednax

$\cos \left(y\cdot x\right)=\left|\tan \left(\frac{x}{y}\right)\right|$

this one is my fav

• Mimey Muth

I was fiddling around with combining equations of circles with sinusoidal equations and came across this:

$y=\left(x^2+y^2-16\right)\cos \left(\left(x^2+y^2-16\right)\left(x\right)\right)$

It looks incredible.

• Mimey Muth

Also, this is a compound interest formula increasing the amplitude of a cosine function with k=equation of circle.

$y=\frac{1}{2}\left(1+0.3\right)^{\left(2-x\right)}\left(\cos \left(\left(x^2+y^2-16\right)\left(x\right)\right)\right)$

• John Fawcett
• Cameron “tech tech” Bennett

$x\sin \left(xx+x\right)=\left|y\right|$

It's... Interesting. It works just fine if you remove the absolute value of Y

• Talon Harris

y=xyxy/xxy

• Bob Deen

y=sin(xyxyxyxy/xxyxyxy)

• Ezra Seidel

Or x!!=y!!