Sometimes the calculator detects that an equation is too complicated to plot perfectly in a reasonable amount of time. When this happens, the equation is plotted at lower resolution.
Unresolved Detail In Plotted Equations
-
N00BM4TH For example: x^y=y^x
-
David Summa sin(x*y) = cos(x*y) takes it to a whole new level.
-
marcus druckman $y=\frac{\left(\frac{x^2}{y}\right)}{\left|\left(\frac{x^2}{y^2}\right)\right|}$ is a mess!!!
-
Tom Lynd (sinx)^y=x^siny
-
Jacob Claassen sin(x/y)=4
-
Isaac Schultz cos(x)+sin(x*y)=cos(y*x)+sin(y)
-
Isaac Schultz y^2=x^2*sin(x^2+y^2)
-
Isaac Schultz (x+y)/(x*y)=sin(x)+cos(y)
-
Isaac Schultz cos(x)+sin(y)=0
-
Rishi Sharma just sin y=cosx will do the work.......
-
Sean Wilson tan(x/y)=x works pretty well
-
Sean Wilson $\tan \left(\frac{x}{y}\right)=\cos \left(\frac{x}{y}\right)$
$\tan \left(x\cdot y\right)=\sqrt[3]{y}$
$\frac{\cos \left(\frac{x}{y}\right)}{\tan \left(\frac{x}{y}\right)}=x\cdot y$
$\tan \left(\frac{x}{y}\right)=\tan \left(xy\right)$
A few others...
-
Andrew Held $0.5=\left(\cos \left(x\right)+\cos \left(y\sin \left(\frac{\pi }{5}\right)+x\cos \left(\frac{\pi }{5}\right)\right)+\cos \left(y\sin \left(\frac{2\pi }{5}\right)+x\cos \left(\frac{2\pi }{5}\right)\right)+\cos \left(y\sin \left(\frac{3\pi }{5}\right)+x\cos \left(\frac{3\pi }{5}\right)\right)+\cos \left(y\sin \left(\frac{4\pi }{5}\right)+x\cos \left(\frac{4\pi }{5}\right)\right)\right)$
Nice looking graph, but apparently it has unresolved fine detail.
-
N00BM4TH https://www.desmos.com/calculator/sdcf8my7a0 could be something, Adjustable fine detail missing! =D
-
Bob Deen x^2=sin(xy^2)
-
Jose Luis Nunez x^(ln(y)) = y^(ln(x)) opens a hole in the universe, apparently.
-
Bob Deen sin(x^2)=cos(y^2) you can guess what that does.
-
Bob Deen and if you want to combine my two comments together, sin(yx^2)=cos(xy^2) [it is really complicated]
-
Ciccio Mostro Vannella $-\frac{1}{2}\cos x^2+x\cos \left(e^{\sin x}+2x\left(\sin y\right)\right)=0$ this too is too much complicated....
-
Paul Medina tan(y)² = sin(x)²
Super crazy! -
Sean Wilson $\tan x^y=\tan y^x$ Takes a while even at low resolution!
-
Sean Wilson $\cos xy=\frac{\ln \frac{y}{x}}{\cos xy}$
$\tan ay=\sin bx$ <<< Adjustable insanity!
$\frac{\tan ay}{\sin bx}=\frac{\sin bx}{\tan ay}$ <<< Adjustable Insanity 2!
$\cos xy=\sin xy$
$\ln x=\frac{\ln y}{\cos x}$
$\frac{\ln x}{\ln y}=\frac{\sin y}{\cos x}$
$\left(\sin x\right)\cdot \sin y=\frac{xy}{\sin x}$ <<< Zoom Out A Lot For This One
$\cos xy=\frac{\sin xy}{x}$
$\tan \left(\cos \left(\sin x\right)\right)=\tan \left(\cos \left(\sin y\right)\right)$
$\frac{\tan x}{\frac{\sin y}{\left(\tan x\right)\cdot \sin y}}=\frac{\sin y}{\left(\tan x\right)\cdot \sin y}$
And now, the holy mother of equations, this: (Calculator can't even do this one!)
$\frac{\frac{\tan \left(\cos \left(\sin x\right)\right)}{\left(\cos xy\right)\cdot \frac{\ln \frac{y}{x}}{\cos xy}}}{\frac{\tan \left(\cos \left(\sin x\right)\right)}{\left(\cos xy\right)\cdot \frac{\ln \frac{y}{x}}{\cos xy}}\cdot \frac{\frac{\tan \left(\cos \left(\sin y\right)\right)}{\left(\cos xy\right)\cdot \frac{\sin xy}{x}}}{\left(\cos xy\right)\cdot \frac{\sin xy}{x}}}=\frac{\frac{\tan \left(\cos \left(\sin y\right)\right)}{\left(\cos xy\right)\cdot \frac{\sin xy}{x}}}{\left(\cos xy\right)\cdot \frac{\sin xy}{x}}$
-
rednax $\cos \left(y\cdot x\right)=\left|\tan \left(\frac{x}{y}\right)\right|$
this one is my fav
-
Mimey Muth I was fiddling around with combining equations of circles with sinusoidal equations and came across this:
$y=\left(x^2+y^2-16\right)\cos \left(\left(x^2+y^2-16\right)\left(x\right)\right)$
It looks incredible.
-
Mimey Muth Also, this is a compound interest formula increasing the amplitude of a cosine function with k=equation of circle.
$y=\frac{1}{2}\left(1+0.3\right)^{\left(2-x\right)}\left(\cos \left(\left(x^2+y^2-16\right)\left(x\right)\right)\right)$
-
John Fawcett https://www.desmos.com/calculator/wyetv1u9a4
Its broken now
-
Cameron “tech tech” Bennett $x\sin \left(xx+x\right)=\left|y\right|$
It's... Interesting. It works just fine if you remove the absolute value of Y
-
Talon Harris y=xyxy/xxy
-
Bob Deen y=sin(xyxyxyxy/xxyxyxy)
-
Ezra Seidel Or x!!=y!!
927 Comments