Unresolved Detail In Plotted Equations

Sometimes the calculator detects that an equation is too complicated to plot perfectly in a reasonable amount of time. When this happens, the equation is plotted at lower resolution.

Have more questions? Submit a request

913 Comments

  • 1
    Avatar
    Tanksear Industries

    \csc\left(\frac{\sin\left(x!y\right)}{xy\cdot\sqrt{yyx}}\right)\ge x^0

  • 0
    Avatar
    Tanksear Industries

    \operatorname{median}\left(\sin\left(\operatorname{mod}\left(x,y\right)\right)\sin\left(y!\right)\cos\left(x!^2\right),\sqrt{\sqrt{\left|\frac{x}{yyx!!\cdot\frac{x}{yy}}\right|}},yxxxyyxyxy,x,\frac{yy!}{xx!}\right)\le\operatorname{mod}\left(\sin x,\cos y\right)

    This one is just simply insane.

  • 0
    Avatar
    Tanksear Industries

    https://www.desmos.com/calculator/porvrrhfzb

    It doesn't have unresolved detail, but if you go to the right even a little bit, it gets weird. Why is this?

  • 1
    Avatar
    D35M05BR34K4G3MA5T3R

    Just sit back and eat fatty Doritos and see DESMOS BREAKAGE unfold in front of your eyes.  So much heck will tick you off - So I suggest you either see a mental therapist before you see heck, or you see a MENTAL therapist and a doctor because you got an aneurysm from the graph.  Good luck living!

    https://www.desmos.com/calculator/eqvnkdjp4i 

  • 0
    Avatar
    D35M05BR34K4G3MA5T3R

    BTW, none of the non-functions are showing, so show the ones you want to see.

  • 0
    Avatar
    Tanksear Industries
  • 0
    Avatar
    Jacob Kinnoin

    https://www.desmos.com/calculator/72scyk26ag

    i took all of your suggestions and put it into a graph hahahahahahahaha

  • 0
    Avatar
    Tanksear Industries

    \tan\left(\sqrt{\frac{\sin\pi x}{4\pi x}}\left(xx^{\sqrt{\frac{x}{y}}}\right)\right)=0

    I'm making weird graphs instead of learning algebra right now

  • 0
    Avatar
    168673
  • 1
    Avatar
    Pulsar

    a collection of a few zany ones. have fun!

    https://www.desmos.com/calculator/sazf5e5gya

  • 0
    Avatar
    Tanksear Industries

    \frac{x}{y}\ge\sin\left(x-y\right)x

     

    This one is pretty interesting
  • 0
    Avatar
    Tanksear Industries
    https://www.desmos.com/calculator/hmksg90dhm
    Does anyone else notice the weird sort of gradient in one of the triangles?
  • 0
    Avatar
    Tanksear Industries
  • 0
    Avatar
    Tanksear Industries

    x+y=x^3+y^u

    But you have to either switch a couple exponents or change u.

  • 0
    Avatar
    Tanksear Industries

    \operatorname{mean}\left(x,y,x^2,y^2,\sin\left(x\right),\cos\left(y\right),y+2,y^2,\sin\left(y\right),\tan\left(x+y\right),x\cdot y\right)=y!x+\sin x

    I found this while digging around in my graphs

  • 0
    Avatar
    Tanksear Industries
  • 0
    Avatar
    David Robillard

    \frac{\sin\left(x!\right)+\sqrt[y]{x!}}{\tan\left(x^y\right)}\cdot\frac{\cot\left(y^x\right)}{\cos\left(y!\right)-\sqrt[x]{y!}}=\frac{\frac{\sec\left(y!\right)-\sqrt[x]{y!}}{\cot\left(x^y\right)}}{\frac{\tan\left(y^x\right)}{\csc\left(x!\right)+\sqrt[y]{x!}}}

  • 0
    Avatar
    Janders2

    \operatorname{mod}\left(y,2\right)=\frac{\left(\sec\left(x\right)+3\right)}{e+\sin\left(5xy\right)}

    This is insanity.

  • 0
    Avatar
    Jase W Andersonyoung

    \frac{\left(xy\cdot\ln\left(2\left(x^2\right)\right)\right)}{\cos\left(\sin\left(e\right)\right)}=\frac{yx}{e}+\frac{\left(\frac{\left(\frac{\left(\frac{\sin b}{\pi}+3\left(\tan\left(y\right)-\ln\left(y\right)\right)^{\left(3+2x\right)}-\frac{6x^2}{7y}\right)}{\sqrt{2^{\frac{x}{2}}}-\frac{\left(8+x\cdot2\operatorname{mod}\left(4e,2y\right)\right)}{8-\sin y}}\right)}{\frac{\left(\cos\left(\tan\left(y\right)+\sec\left(\frac{6x}{y}\right)\right)\right)}{\cot\left(6y\right)+2^a}-\frac{\left(\sin x+\sin y\right)}{\tan y+\ln x-\sin\left(x^2\right)}}+\frac{\left(\frac{\ln6}{y}+\cos x\right)}{\sum_{n=\frac{5}{x}}^{\sin\left(\sqrt{yx}\right)}\ln\left(\sin\left(\frac{x}{3y}\right)\right)}\right)}{\left(\sqrt{\operatorname{mod}\left(\sum_{n=y+\frac{\cos x}{\sec\left(y^3\right)}-\ln\left(\frac{3y}{5}\right)}^{3^{\left(x+y\right)}}\frac{5y}{e^x}+\sqrt{3y},6bx^2\cdot y\sin\left(20\right)\right)}\right)}

    b=\sqrt{yx}+e^{\sin x^{\left(2\right)}}+6\tan\left(y\right)

    a=\frac{\sin x}{\frac{\sin y}{\frac{\sec x}{\pi xy+2}}}

    It broke, there's nothing there at all unlike my last one which as i said was insanity.

  • 0
    Avatar
    300149

    y=4x^y

  • 0
    Avatar
    Tanksear Industries

    https://www.desmos.com/calculator/nz4tghusvg

    You will become like the title of this graph.
  • 0
    Avatar
    Tanksear Industries

    https://www.desmos.com/calculator/248moslqhp

    The sign of confusion is  \frac{x}{c^{yyx}}\cdot\sqrt{\sqrt{\frac{\frac{x}{y}x}{yyy}}}\cdot\sin\left(x\cdot\sqrt{xy}\right).
    Edited by Tanksear Industries
  • 0
    Avatar
    Tanksear Industries

    https://www.desmos.com/calculator/nggzobvv2r

    ...I should probably be working on my test right now.

  • 0
    Avatar
    Tanksear Industries

    \frac{x}{y}^x\cos\left(\frac{\sqrt{\frac{x}{yy^{\sqrt{yx}}}}xy}{\sqrt{\sqrt{\frac{y}{x^{yyx}-xy}}}}-\operatorname{floor}\left(\frac{yx}{xxy\cdot x^y}\right)\cdot\sqrt{\sqrt{\frac{xy}{x}}}\right)\le\operatorname{ceil}\left(\sin\left(\frac{x}{\sqrt{yx\cdot\sqrt{\sin\left(\sqrt{\sqrt{xx^{\sqrt{y}}}}\right)}}}-\sqrt{\frac{x}{y}\cdot\sqrt{\sqrt{\frac{yyx}{yx}}}}\cdot xxx^{\sqrt{xyx}}\cdot\sqrt{\sqrt{\frac{ex}{x\%\operatorname{of}yyex}}}\right)\right)

    for a good spot, https://www.desmos.com/calculator/s1ymshnxvy

  • 0
    Avatar
    Tanksear Industries

    0\le\sin\left(\frac{y}{\sin\left(\frac{x}{\sin\left(\frac{y}{\sin\left(\frac{x}{\left(\sin\left(\frac{y}{\sin\left(x\right)}\right)\right)}\right)}\right)}\right)}\right)

  • 0
    Avatar
    Tanksear Industries

    https://www.desmos.com/calculator/al8k1gmqyd
    Try moving around in this one. It's weird.

  • 0
    Avatar
    Alexander

    You can also try \sin y=\frac{x^2}{y^3}, it turns out kinda weird

     

  • 0
    Avatar
    Noah Albrecht2000

    \left|y\right|\ =\ \sin\left(\frac{x}{3.5}\right)^2\cdot x

    ist just getting bigger and it looks cool

     

  • 0
    Avatar
    GlitchedGraph666

    \frac{\sin\left(x!\cdot y!\right)}{\tan\left(x^2!+y^2!+x^3!!+y^3!!!\right)}=\sin\left(\frac{x!}{y^2}\cdot\frac{y!}{x^2}\right)

  • 0
    Avatar
    D35M05BR34K4G3MA5T3R
Please sign in to leave a comment.
Powered by Zendesk