Sometimes the calculator detects that an equation is too complicated to plot perfectly in a reasonable amount of time. When this happens, the equation is plotted at lower resolution.
Unresolved Detail In Plotted Equations


Tanksear Industries I'm proud of this

Tanksear Industries 
Christopher Hart cos x^y+sin y^x=cos xy+sin xy

Daemon Morrisoneagan WHAT THE HELL DID I DO (press play next to the "a" variable, close that sidebar, and watch it go down until it "a" = 500)

Boone Goodgame \cos\left(xy^{\cos6}\right)=\arctan\left(\arctan\left(\sin\left(6^2y\right)\right)\right)
kinda terryifing 3d illusion. (try replacing all the 6's with "a" and moving the slider )

Ethan Brown This one is weirdly Beautiful y=\sqrt[\sin\left(yx\right)]{x}

Endy \frac{\left(x^2+y^2\right)}{xy+1}=\frac{y^y}{\frac{\cos(y^2)}{\sin(x^2)}}x^x
This actually gives me trypophobia holy crap 
Daemon Morrisoneagan The Best Desmos Flower

F m*a (A/S*cosa) \left(\sin^2\left(x\right)\cos^2\left(y\right)\right)^2\left(\sin^2\left(y\right)\cos^2\left(x\right)\right)^2=0 use zoom to 10^8

Lking22 \operatorname{arcsec}y\le\tan\left(\left\left(\sec\left(\leftx\right\right)\left(\frac{y}{x}\right)\right)\right\right)

Lking22 \left\frac{\left\tan x\right}{\operatorname{arcsec}y}\rightx=\cot\left(\frac{y}{\left(\frac{x}{y}\right)}\left(\frac{\operatorname{arcsec}\left(y\right)}{\leftxy\right}\right)\right)
its pretty neat

Lking22 \frac{\left\operatorname{arcsec}x\right}{\cot y}=\cos\left(\frac{x}{y}\leftx\right\right)x
UwU

Anti Social Moth I am gay

Pat and Josh Wang If you put more factorials on either side like x! = y!! or x!! = y! or x!!! = y!!!, it will look like an underground camp in the negitave sides. x!!! = y!!! is my fav

david snyder x^{\sin\left(y\right)}=\sin\left(x\right)

Campbell Madsen Pretty cool ones:
$\operatorname{gcf}\left(x,y\right)=\arctan y^2x^2$ < looks epic
$\frac{\arctan x^2}{\operatorname{lcm}\left(x,xy^2\right)}=\tan xy$< that one design you have been seeing but then you zoom in and it is weird
$\log_x\left(\operatorname{gcf}\left(x,y\right)\right)=\frac{\tan xy}{\sin xy}$ < zoom out
$\frac{\tan x}{\sin y}=\frac{\cos x}{\tan x^2}$
$\operatorname{floor}\left(x\right)^{2}=\operatorname{ceil}\left(y\right)^2$ < literally 8 lines
$\frac{\exp\left(x^2\right)}{\operatorname{floor}\left(y\right)}=\frac{y^2}{\cos x+\tan y}$ < mega ladder

keegan watson https://www.desmos.com/calculator/ucbkksn3cb Doesn't have unresolved detail, but turns the graph black

Alkane Productions try x/y * y/x=1 I don't even know how to explain it.

Dvd Pr e^x = 0

Jacob HansenBlum 
Luke747 y=\tan\left(\tan\left(\frac{\sin\left(\cos\left(\tan x\right)\right)}{y}\right)\right)
IDK what this even is

Jesse Boyd e^(xx^2+ln(x))6x=y+ln y

Wkitor log_x(y)=1/(log_y(x))

Adam Babieradzki y/x^2=cos(xy) is pretty cool
925 Comments