Sometimes the calculator detects that an equation is too complicated to plot perfectly in a reasonable amount of time. When this happens, the equation is plotted at lower resolution.
Unresolved Detail In Plotted Equations
-
Kelvingtonib x^2y^2=\left(\tan \left(\pi ^{y^{\frac{2}{5}}}\right)\right)
This creates two perfect gradients
-
Jake browning Or: e^(log(x)*y)=999
-
Colby Phillips sin x =sin y
is super cool!
-
Kbasinger21 \frac{5x^y}{3y^x}=\sin \left(\cos \left(x\right)\right)
-
Jason Husvar y^sinx=x^siny
put in sin(cos(tan(x)))=sin(cos(tan(y))) and sin(cos(tan(csc(sec(cot(x))))))=sin(cos(tan(csc(sec(cot(y)))))) in two different equations at one time.
I then broke my computer doing the same as the second part of the above comment, but put each of the trig functions in twice
-
Kbasinger21 xy^{\sin xy}=xy^{\cos xy} then zoom out
-
MattTheWaffleCat It gets crazy when you .05\ge \frac{\left(\frac{\frac{\tan x^2}{\sin x^2}}{\cos \ x^2}+\frac{\frac{\tan y^2}{\sin x^2}}{\cos x^2}\right)}{\left(\tan x^3\right)\cdot \left(\tan y^3\right)}
-
Gavin R 100=\frac{\frac{\frac{\left(\frac{\left(\left(\sin \left(x+3\right)\left(\cos x-8\right)\left(\tan \left(x-8\right)^2\right)\right)\right)}{\left(x-7\right)\left(x-4\right)\left(x+2\right)\left(x-y\right)}\right)\left(y^{\left(\left(2\right)x\right)}\right)}{\left(x-\tan \left(x+y\right)\right)\left(y-\tan \left(x+y\right)\right)}\left(ye\pi \right)}{y^x+x^y+\pi }\left(\frac{\left(\frac{\left(y\left(\log _xy\right)^{\sin \left(x\right)}\right)}{y+6-\frac{4\sin \left(x\right)}{\log _xy}}\right)\left(\frac{\left(\frac{e}{\pi }+\frac{x}{e}\right)}{\left(\tan \left(e\right)+\sin \left(e\right)+\cos \left(e\right)\right)\pi }\right)}{\log _91000y+ye\pi }\right)ye\pi \left(\sin \left(\frac{x}{y}\right)\right)}{\sin \left(xyxyxyx\right)\log _xy}\left(\frac{\frac{\frac{\frac{\left(\frac{\cos \left(7x+3\right)}{\tan \left(6x\right)}\left(\sin \left(x^3\right)\right)-\frac{x}{\cos \left(7x^5\right)}\right)}{x^3\left(\frac{\cos \left(x+2\right)}{\sin \left(\frac{x}{7}\right)}\right)}}{y\left(\tan \left(\frac{x}{x-6}\right)+\cos \left(x\right)\right)}\left(\log _xy\right)\left(\frac{\tan \left(xy\right)\sin \left(\frac{x}{y}\right)\cos \left(\frac{y}{x}\right)}{\frac{\tan \left(\frac{y}{x}\right)\sin \left(xy\right)\cos \left(\frac{x}{y}\right)}{\tan \left(\frac{x}{y}\right)\sin \left(\frac{y}{x}\right)\cos \left(xy\right)}}\left(e^x\right)\right)}{\left(\tan ex\right)\left(\log _{7x}y\right)\left(god\right)}\left(\log _{\tan x}y\right)}{e}\left(e^6+y^2+x^2+g^2+o^2+d^2\right)^3\right)
I have no idea what I'm doing.
-
Ethan Gilchrist https://www.desmos.com/calculator/kr4elldnyi
fun with circles
-
Dante Demerath \sin \left(x!\right)=\cos \left(y^{y!}\right)
opens a portal to another dimention
-
伊藤那由多 Even sin(2pix)sin(2piy)=0 showed the message... It's quite obvious that this is a grid.
-
Henry Lee https://www.desmos.com/calculator/xrnyctbsde
combined most other comments
-
cameron broberg I found y=x/z graphed on the same axis as z=x/y to be very interesting. It can be simplified to say 1=1, so it should graph every point, but it instead forms a pattern of unresolved detail. Likely a result of the program and not the math.
-
Mcl0011 Never try sin(xy)-cos(xy)-tan(xy)=sin(xy)+cos(xy)+tan(xy)
-
104989 this is COMPLETELY insane... also you can use this to make a sunflower :)
\tan \left(999^{x^{\frac{1}{3}}y^{\frac{1}{3}}}\right)=\sin \left(999^9x^2y\right)\left\{.01\le x^2+y^2\le 4\right\}
-
Az cos(x)<1, oddly, when you zoom out
-
Az sin(x)=x^(xx) shows nothing but pops the message up
-
Az \sin \left(\cos \left(\tan x\right)\right)=\sin \left(\cos \left(\tan y\right)\right) looks beautiful
-
Pinrui Huang 0\le \sin \left(-3x^2+2y\right)
-
Fabian Rehhaus y=\sqrt[\left|x!\right|]{y!}\cdot \sin \left(y\right)
-
20avva or just x!=y!
-
Lone Stars yet some how \csc \left(\tan \left(\tan \left(\tan \left(\tan \left(5x+1\right)\right)\right)\right)\right) isnt to detailed to have dis happen.... also RUNWAY BABY XD
-
20avva x\sin x^y=1
-
Usbstickuser x=y cos(xy) takes it to a whole new level in a beautiful way though
-
Oon Han \tan \left(\frac{x}{y}\right)=\cos \left(\frac{x}{y}\right)\sin \left(\frac{x}{y}\right)
-
Computingpotatochips y=\frac{\left(4\left(0.5x\right)+\frac{2^x}{x^2-\frac{3x^4}{x^x}}\cdot \cos \left(\frac{\pi x}{3}\right)^x\right)}{\ln \left(\frac{2x}{\sin \left(7x^4\right)-\cos \left(\pi ^{\frac{x}{2x}}\right)}\right)}+\frac{\tan \left(\frac{x^{\pi }}{3}\right)}{2x^4-\frac{3x}{\log \left(2\right)}}+3
-
Computingpotatochips Try altering c to change adjustable fine detail. https://www.desmos.com/calculator/hhaqt3tpxr
-
Neeleyl9565 Lag Machine 9000: xx\sin \left(\tan \left(\sqrt{xyxxyx}\right)\right)y\ =\ yy\sin \left(\tan \left(\sqrt{xyxxyx}\right)\right)x
crescent thing: x!y\sin \left(y^x\right)x^{yyy}=y!x\sin \left(x^y\right)y^{xxx}
Lag Machine 9001: \left|xyyx\right|=\left|yxxy\right|
Trailing Off Functions (doesnt lag or give unresolved details, the function just looks neat): x^{x^{x^{x^{x^{x^{x^{x^{x^x}}}}}}}}\sin \left(x^{x^{x^{x^{x^{x^{x^{x^{x^x}}}}}}}}\right)=y^{y^{y^{y^{y^{y^{y^{y^{y^y}}}}}}}}\sin \left(y^{y^{y^{y^{y^{y^{y^{y^{y^y}}}}}}}}\right)
-
Neeleyl9565 Supernova: \sin \left(\cos \left(\tan \left(\frac{\frac{x}{2}x}{\frac{y}{2}y}+\cos \left(\frac{3}{10}y\right)\right)\right)\right)\ =\ yx
A Hole In The Universe: \tan \left(\frac{\sin \left(x\right)y}{\cos \left(y\right)x}\right)!!<xyxy
-
Urav Maniar This graph looks like DNA:
807 Comments