Sometimes the calculator detects that an equation is too complicated to plot perfectly in a reasonable amount of time. When this happens, the equation is plotted at lower resolution.
Unresolved Detail In Plotted Equations

Jhuber press play for magichttps://www.desmos.com/calculator/hgmyjefaal

CalculusMaster This one is quite crazy:
\sin \left(10x^2\right)=\cos \left(10y^2\right)
Placing this in the 3d calculator is also pretty cool
\sin \left(10x^2\right)\cos \left(10y^2\right)

Harsimar Singh floor(x)+floor(y)=4

Jhuber for a hexagon generater, press playhttps://www.desmos.com/calculator/3io8d6l4ey

Jhuber dot,dot,dot https://www.desmos.com/calculator/vapildqygf

Mikael Juutinen y=\log _x\left(x^y\right) no just no

Ethan LI 
Koulatko craziest equation in the universe:
\frac{\frac{\cos \left(\tan \left(\sec \left(\frac{x}{y^x}\right)^{\tan \left(\cos \left(x\right)^y\right)}\right)\cdot \sec \left(\frac{x}{y^5}\right)\right)}{\frac{\arctan \left(\cos \left(xy\right)^{\left(\tan \left(\cos \left(x\cdot \sec \left(y\right)\right)\right)\right)}\right)\cdot \sec \left(\tan \left(x^{y^x}\right)\right)}{\frac{\tan \left(\sec \left(x^{y^{\cos \left(xy^{x^y}\right)}}\right)\right)}{\frac{\sec \left(xy\right)}{\sin \left(\tan \left(\cos \left(\sec \left(xy^{4^{\cos \left(xy\right)}}\right)\right)\right)\right)}}}}\cdot \tan \left(\cos \left(\pi \cdot \frac{\cos \left(\frac{xy}{\tan \left(xy\right)}\right)}{\sec \left(\frac{\sin \left(x\right)}{\arctan \left(\cos \left(\arcsin \left(\tan \left(x^{y^{x^y}}\right)\right)\right)\right)}\right)}\right)\right)}{\arcsin \left(\cos \left(\tan \left(x^{\frac{y}{x}}\right)^{\arctan \left(\cos \left(\sin \left(\tan \left(xy\right)\right)\right)\right)}\right)\right)}=\cos \left(\sec \left(xy\right)\right)

Michal Nemecek (X^a)+(y^a)=1
a=1000

Matthew Melgoza x=cos(y)/tan(x)

Monkey D Luffy x!=y

Michael Millo Sometimes, if you zoom in enough, the calculator can print finer lines, and the error won't appear.
Zoomed in close enough, x^y=y^x is viewed perfectly, but zoomed out, it cannot calculate perfectly every intricate line in that space.

Tyler “TySkyo” Skywalker wy=zx, if w=1/y and z=1/x

Indevrus tg(x)+ctg(x)=siny

Pomona CH \cos y^x=\tan \ x^y

Urav Maniar Plot y=\ \ln e^x
Zoom till range: 2 E15 <= x <= 2 E15
1 E15 <= y <= 1 E15.

H4x0r Jackson (H4x0r) Looked like some sort of language!
to me anyway
x = nCr(x,y)
Same goes with nPr

CalculusMaster 
CalculusMaster \left(\operatorname{floor}\left(x\right)\right)^{\pi }y^{2\pi }=y

Urav Maniar 
Jerry Lee MATH
A stupid person typed the following to Desmos:
y=xy(x+y)(xy)(2x+y)(2xy)(x+2y)(x2y)(x^2+y^21)(x^21)(x^2+y^24)(y^24)......(x^2+y^2n^2)(x^2 or y^2 n^2)
and got this message.
What is the minimum of n? 
Jerry Lee tan(x)+tan(y)=cos(xy)
Interesting.

Evan Bailey The inequality e^x>x+1+0y (the +0y to prevent Desmos from seeing it as a complex inequality on just x, which it cannot graph) behaves strangely at very close zooms and pops an unresolved detail error. To force it to work at larger zooms, copy and paste the following, changing both of the 9's to reflect the desired scale. e^{\frac{x}{10^9}}>1+\frac{x}{10^9}+0y
(you can also set n to a slider starting at 9 and copy and paste this in: e^{\frac{x}{10^n}}>1+\frac{x}{10^n}+0y)

Albert Zeller Try sin(y^x*x^y)=cos(y^x*x^y)

Alajbegua \cot \left(x^2+y^2\right)=y

Nate East \left(\frac{x^{69}}{1^{69}}\frac{y^{69}}{1^{69}}\right)^2=1
this just makes a square (kinda) that has very high detail corners

Robert Clarahan x=\ln \left(yx\sin \left(xy\right)\right)
which is ln( y*x*sin(x*y))
really screws it up.
Is there a way to tell it to take the time to graph it finely?

Maxim \left(x^2+y^21\right)^3x^2y^3=0

Tpierson0958 \sin \left(\frac{\lefty\right}{y+\operatorname{sign}\left(y\right)}\right)=\cos \left(\frac{\leftx\right}{x+\operatorname{sign}\left(x\right)}\right)

Tpierson0958 \sin \left(22\left(\frac{\left\sqrt{y^2+x^2}\right}{\operatorname{sign}\left(\sqrt{y^2+x^2}\right)\sqrt{y^2+x^2}}\cdot \sin \left(\arctan \left(\frac{y}{x}\right)\right)\right)\right)=\sin \left(22\left(\left(\frac{\left\sqrt{y^2+x^2}\right}{\operatorname{sign}\left(\sqrt{y^2+x^2}\right)\sqrt{y^2+x^2}}\right)\cos \left(\arctan \left(\frac{y}{x}\right)\right)\right)\right)
762 Comments