Unresolved Detail In Plotted Equations

Sometimes the calculator detects that an equation is too complicated to plot perfectly in a reasonable amount of time. When this happens, the equation is plotted at lower resolution.

Have more questions? Submit a request

927 Comments

  • 1
    Avatar
    Peyton Omer

    \left(\cos x\right)!=\left(\sin y\right)!

    feel free to tweak the numbers. Its pretty amazing what patterns you can make

  • 2
    Avatar
    Thomas Abel

    \tan\left(y^2\right)=\sin\left(x^2\right)+\cos\left(x^2\right)

    ^ Pretty cool

  • 1
    Avatar
    70654

    x!^y!=y!^x!

  • 1
    Avatar
    Chua Boon Hsuan

    y=|x+|y+|x||| works too!

  • -1
    Avatar
    Lking22

    \frac{\arctan\left(x\right)}{\operatorname{arcsec}\left(y\right)}\ =\sin\ \left(\frac{\left(\frac{y}{x}\right)}{\cos\left(y\right)}\right)

  • -1
    Avatar
    Lking22

    \frac{\cos\left(x!\right)}{\cos\left(x\right)}

  • -1
    Avatar
    Lking22

    \frac{\cos\left(x!\right)}{\cos\left(x\right)}=\frac{\arccos\left(y!\right)}{\operatorname{arcsec}\left(x\right)^{\frac{x}{y!}}}

  • -1
    Avatar
    Lking22

    \frac{-\sec x^{\frac{x}{y}}}{\arctan\left(\frac{x}{y}\right)}=\frac{yx}{\sec\left(y\right)}^{\frac{xy}{-\tan x}}

  • -1
    Avatar
    Lking22

    \frac{\arctan\left(x!\right)}{\sin\left(x\right)}=\frac{\sin\left(y\right)}{x!}

  • -1
    Avatar
    Lking22

    \operatorname{arcsec}y=\tan\left(\left|x+\left|y+\left|x\left|x\right|\left|\frac{x}{y}\right|\right|\right|\right|\right)

     

     

     

    Edited by Lking22
  • -1
    Avatar
    Lking22

    \tan\left(x\right)!\ ^y=\ \tan\left(y\right)!^{\frac{\sin x}{y}}

  • -1
    Avatar
    Lking22

    \frac{\sec\left(x\right)}{y}=\frac{\left|\arctan\left(y\right)\right|\pi}{\sec\left(y\right)}

  • 3
    Avatar
    Finnigan Declan

    \left(\frac{\left(\frac{x^{2y}}{y}\right)}{\left|\left(\frac{x^3}{y^2}\right)\right|}\right)\frac{x^{\frac{2\cdot\sqrt{x}}{6\sqrt{y}}}}{x^{3\sqrt{\frac{xyy}{\frac{yxx}{xyy}}}}}y^{\frac{\tan x}{\frac{\sin y}{\left(\tan x\right)\cdot\sin y}}}-\frac{\log\left(y^{\frac{-\sqrt{\left(\sqrt{x\sqrt{y+\sqrt{x^{2^{2\cdot\sqrt{x}}}x}}}\right)}}{\left(\sqrt{x^{\sqrt{\frac{2\cdot\sqrt{x}}{6\sqrt{y}}}}}\cdot\frac{0.3xxx}{0.3y}\right)}}\cdot\frac{\left(4x^{-2}\sqrt{x^{-y}-\frac{x}{y^{222}}}\right)}{xy^{3\sqrt{xx}}}-\tan\left(\cos\left(\sin x\right)\right)\right)^{\frac{3}{\sin\left(\tan\left(\sec x\right)\right)}^{\frac{7}{\cos\left(\cot\left(\csc y\right)\right)}^{\frac{d}{dx}\sin\left(x^y\right)^{\tan\left(y^{\tan\left(x^y\right)}\right)^{\frac{\tan y+x^2}{x!!y^{\frac{2\pi}{3}}+\left|\sqrt{xy}\right|}}+1}}}}}{\left(y\cos\left(x\right)+y\sin\left(\frac{\pi}{5}\right)+x\cos\left(y\right)+\left(x\sin\left(\frac{2\pi}{5}\right)\right)+y\cos\left(x\right)+y\sin\left(\frac{3\pi}{5}\right)+x\cos\left(y\right)+x\sin\left(\frac{4\pi}{5}\right)+y\cos\left(x\right)+y\sin\left(\frac{5\pi}{5}\right)\right)-\frac{1}{2}\cos x^2+x\cos\left(e^{\sin x}+2x\left(\sin y\right)\right)-\frac{d}{dx}x^2-3\sin\left(xy\right)\cdot\frac{\tan\left(\cos\left(\sin x\right)\right)}{\left(\cos xy\right)\cdot\frac{\ln\frac{y}{x}}{\cos xy}}\frac{\tan\left(\cos\left(\sin x\right)\right)}{\left(\cos xy\right)\cdot\frac{\ln\frac{y}{x}}{\cos xy}}\cdot\frac{\frac{\tan\left(\cos\left(\sin y\right)\right)}{\left(\cos xy\right)\cdot\frac{\sin xy}{x}}}{\left(\cos xy\right)\cdot\frac{\sin xy}{x}}}=\left(\frac{\csc\left(x\right)+x}{\sqrt{\sin\left(y!\right)}\cdot x^{\frac{\tan\left(x\right)}{2y}}}+\frac{\frac{-\left|\operatorname{floor}\left(\frac{\coth\left(\frac{y}{\sin x}\right)}{x-\sin\left(9y\right)!}^2\right)^{x^{y^3}}\right|+\frac{\frac{\tan\left(\cos\left(\sin y\right)\right)^{\frac{\frac{\tan\left(\cos\left(\sin x\right)\right)}{\left(\cos xy\right)\cdot\frac{\ln\frac{y}{x}}{\cos xy}}}{\frac{\tan\left(\cos\left(\sin x\right)\right)}{\left(\cos xy\right)\cdot\frac{\ln\frac{y}{x}}{\cos xy}}\cdot\frac{\frac{\tan\left(\cos\left(\sin y\right)\right)}{\left(\cos xy\right)\cdot\frac{\sin xy}{x}}}{\left(\cos xy\right)\cdot\frac{\sin xy}{x}}}}}{2\left(\csc xy\right)\cdot\frac{\sin xy}{x!!}}}{\left(\cos xy\right)\cdot\frac{\sin xy}{xy}}\cdot\frac{1}{2}\left(1+0.3\right)^{\left(2-x\right)}\left(\cos\left(\left(x^2+y^2-16x\right)\left(\sin x\right)\right)\right)}{\left(\cos\left(x\right)+\cos\left(y\sin\left(\frac{\pi}{5}\right)+x\cos\left(\frac{\pi}{5}\right)\right)+\cos\left(\frac{y\sin\left(\frac{2\pi}{5}\right)}{\frac{2y}{x}}x\cos\left(\frac{2\pi}{5}\right)+2x\right)+\tan\left(y\sin\left(\frac{32\pi}{5}\right)+x\cos\left(\frac{3\pi}{5}\right)\right)+\cos\left(y\sin\left(\frac{4\pi}{5}\right)+\frac{x}{6y!}\cos\left(\frac{4\pi}{5}\right)\right)\right)}x^{x^{x^{x^{x^{x^{x^{x^{x^{x^{x^x}}}}}x}}}x}x^{x^{x^y}}}x}{\frac{x}{\frac{x}{\frac{x}{\frac{x}{\frac{x}{\frac{x}{\frac{x}{\frac{x}{\frac{x}{\frac{x}{\frac{x}{\frac{x}{\frac{x}{\frac{x}{\frac{x}{\frac{x}{\frac{x}{\frac{x}{\frac{x}{\frac{x}{\frac{x}{\frac{x}{x}}}}}}}}}}}}}}}}}}}}}}}\right)^2

  • 3
    Avatar
    William Goudeau

    same

  • 0
    Avatar
    Christopher Rice

    \cos\left(x^{x^{x^{x^xx}x}x}x\right)=\sin\left(y^{y^{y^{y^yy}y}y}y\right)\cos\left(x^6\right)2\tan^{-1}\left(\tan\left(\cos\left(\tan9^x\right)\right)\right)\cot\left(\operatorname{csch}\left(\tanh\ x^{x_0xy}\right)\right)

  • 0
    Avatar
    Joseph Bluestein

    same fin. declan

  • 0
    Avatar
    Franklyn Silvas

    Here's one: y=y^x

  • 1
    Avatar
    Orion D. Hunter

    I saw the infinite field of sevens and made https://www.desmos.com/calculator/uxnpor5fdf

    It is an infinite field of squares and if you zoom out far enough you know why this is here

  • 1
    Avatar
    Ze_Mathster

    @orion d hunter I did make a field of circles. Once.

  • 0
    Avatar
    Rahul Prasad

    \tan(y)^2=\cos(x)^2\sin\left(x\right) infinite infinities

  • 0
    Avatar
    Rahul Prasad

    \tan\left(x!y!\right)=\left(xy\right) makes cool patters

  • 0
    Avatar
    Thomas Hall

    \sin(x^2)^{\log\ \left(y^{\left(x+\sin\ y\right)}\right)}=\cos(y^2)^{\tan\ \left(xy^3\right)}

  • 0
    Avatar
    Lking22

    \arctan\left(y^2\right)\le\sin\left(y^2\right)+\cos\left(x^2\right)

  • 0
    Avatar
    Lking22

    \tan\left(x\right)=\cot\left(\frac{y}{\left|x\right|}\right)

  • 0
    Avatar
    Lking22

    \frac{\left(\frac{\left|\sqrt{\left(x!\right)}\log\left(\left|y\right|\right)\sec\left(y!\right)\right|}{\sqrt{y}\left|\tan\left(x\right)\left|\frac{y}{x\left|y\right|}!\right|\right|}\right)}{\left|xy\left|\arctan\left(x\right)\right|\right|}=\left(\frac{\left|\frac{x}{y}\right|}{\log\left(y\left|x\right|\right)}\right)^{\frac{x}{\sec\left(y\right)!}}

  • 0
    Avatar
    JJ

    \frac{\sin\left(x\cdot y\right)}{x^{92}}=\frac{\cos\left(x\cdot y\right)}{3x}\cdot30x-\frac{y}{x\cdot5^{89}}

  • 0
    Avatar
    JJ

    \frac{\frac{\sin\left(x\right)}{\cos\left(xy^6\right)}\frac{\cos\left(y\right)}{\sin\left(xy^6\right)}}{\sin\left(x\cdot y\right)}=\frac{\frac{\sin\left(x\right)}{\cos\left(xy^{-6}\right)}\frac{\cos\left(y\right)}{\sin\left(xy^6\right)}}{\sin\left(x\cdot y\right)}

    O

    L

    L

    E

    H

  • 1
    Avatar
    CHARLES GRAY

    IDK But try this: \sin\left(x^2\right)=\cos\left(y^2\right) -_- ;P

  • 0
    Avatar
    William Drury

    setting any complex equation equal to a slightly simplified version

  • 0
    Avatar
    Evin Liang
Article is closed for comments.
Powered by Zendesk