# Unresolved Detail In Plotted Equations

Sometimes the calculator detects that an equation is too complicated to plot perfectly in a reasonable amount of time. When this happens, the equation is plotted at lower resolution.

202 out of 223 found this helpful
Have more questions? Submit a request

• Cw70921

This is a cool one

\sin x=\cos y+\tan x

• 70654

\tan\left(x^2\right)=y^2

• 70654

\tan\left(\cos\left(x\right)\right)\ge\cos\left(y^2\right)

• 70654

xy^2\cos\left(y\right)=x^{1213}

makes odd rectangles

• Matthew Ford

y=\csc\left(\frac{xy}{\sin\left(x\right)}\right) try this

• 프로마주fromage

\ln\left(y\sin\left(x\right)\right)=\sin\left(x\ln\left(y\right)\right)

• Tanksear Industries
• Ander Ku

Tupper's Equation:
\left(\frac{1}{2}\right)<\operatorname{floor}\left(\operatorname{mod}\left(\operatorname{floor}\left(\frac{y}{17}\right)\cdot2^{\left(-17\cdot\operatorname{floor}\left(x\right)-\operatorname{mod}\left(\operatorname{floor}\left(y\right),17\right)\right)},2\right)\right)\left\{0<x<106\right\}

Doesn't Work; Resolution Error (Besides the point of taking forever to actually scroll to where the intended boundaries of the equation in the first place)

• Micha Yehudi

x=(sqrtx)^2

• Charliedevelin

y=\frac{\left(\frac{x^2}{y}\right)}{\left|\left(\frac{x^2}{y^2}\right)\right|}

• Linus Truver

\tan\left(\sqrt[3x]{64y}xy^4\right)=\frac{\frac{x!!}{9\sqrt{y}}\cdot4}{\tau y}+\frac{1}{\frac{2}{\frac{3}{\frac{4}{\frac{5}{\frac{6}{\frac{7}{\frac{8}{\frac{9}{\frac{10}{\frac{11}{\frac{1}{\frac{13}{\frac{14}{\frac{15}{\frac{16}{\frac{17}{\frac{18}{\frac{19}{\frac{20}{\frac{21}{\frac{22}{\frac{23}{\frac{24}{\frac{25}{\frac{26}{\frac{27}{\frac{28}{\frac{29}{30}}}}}}}}}}}}}}}}}}}}}}}}}}}}}

• Charliedevelin

\cos\left(\tan\left(\sin\left(x\right)\right)\right)=\cos\left(\tan\left(\sin\left(x^2y^2\right)\right)\right)

(  cos(tan(sin(x))) = cos(tan(sin(y)))  )

• GlitchedGraph666

\cos\left(\frac{x^2y}{1+\cos\left(\frac{x^2y}{2+\cos\left(\frac{x^2y}{3+\cos\left(\frac{x^2y}{4+\cos\left(\frac{x^2y}{5+\cos\left(\frac{x^2y}{6+\cos\left(\frac{x^2y}{7+\cos\left(\frac{x^2y}{8+\cos\left(\frac{x^2y}{9+\cos\left(\frac{x^2y}{10+\cos\left(x^2y\right)}\right)}\right)}\right)}\right)}\right)}\right)}\right)}\right)}\right)}\right)>\cos\left(x^2y\right)

• GlitchedGraph666

\cos\left(x^2+\frac{y^2}{x^2+\frac{y^2}{x^2+\frac{y^2}{x^2+\frac{y^2}{x^2+y^2}}}}\right)>\tan\left(\tan\left(x+y\right)\right)

• Linus Truver

\frac{x\%\operatorname{of}y}{95^{4y}}=\cos\left(\frac{x}{5}\right)-y\sum_{n=4}^{57\sin\left(\frac{x}{y}\right)}6

• Tanksear Industries

\left(\tan\left(x\right)\right)^{\left(\sec\left(x\right)\right)^{\sin x}}\le\cot\left(\csc\left(\cos\left(y\right)\right)\right)

Sideways grass

• Tanksear Industries

https://www.desmos.com/calculator/yb7r66etqx

Not fine detail, but breaks desmos all the same

On a side note, has anyone been able to get fine detail with parametrics?

• Fanyi Zhao

\tan\left(x+y\right)+\tan\left(x-y\right)=1

• Fanyi Zhao

tan(x+y)+tan(x-y)=1

• Jackco24

y = x^xxx^yyy

• GlitchedGraph666

\sin\left(\tan\left(x!^2\right)^2\cdot\cot\left(y!^2\right)^2\right)!^3<\cos\left(\cot\left(x!^2\right)^2\cdot\cot\left(y!^2\right)^2\right)!^3

• GlitchedGraph666
• GlitchedGraph666
• Lking22

\frac{\left(\frac{\frac{\sin\left(x\right)^{-1}}{\tan\left(y\right)^{-2}}}{\sin\left(x\right)}\right)}{\sin\left(x\tan\left(y\right)\right)}=\frac{\left(\frac{\left(\frac{\tan\left(xy\right)^{-3}}{\sin\left(y\right)^{-2}}\right)\sin\left(yx\right)}{\frac{\cos\left(x\right)^{-1}}{\cos\left(y\right)}}\right)}{\tan\left(xy\right)}

• Lking22

\frac{\sin\left(x\right)}{\cos\left(x\right)}=\tan\left(x\right)

• Lking22

\frac{\left(\cos\left(x\right)^{-2!}\right)}{\tan\left(xy\right)}=\left(\tan\left(y\right)^{-2!}\right)

• Lking22

\cos\left(x\right)!=\cos\left(y\right)!

• Lking22

\cos\left(y^x\right)!=\tan\left(y^x\right)!

• Tanksear Industries

\frac{y}{\sin x}=\frac{\left|\sin x\right|}{x^{\sin\left(\left|y\right|\right)}}

Then go to the right or zoom out.

• Tanksear Industries

\tan\left(\frac{x}{\sin x}\cdot\frac{y!}{\sqrt{x-y}}\right)\le\sqrt{x}