Sometimes the calculator detects that an equation is too complicated to plot perfectly in a reasonable amount of time. When this happens, the equation is plotted at lower resolution.
Unresolved Detail In Plotted Equations

Tanksear Industries 
Jonahscott2020 I have some advice on parametrics. Use 't'. Format the graph like a point. Check the point below for _<=t<=_. See https://www.desmos.com/calculator/0rvcnv5tey for an example. I know this has nothing to do with Unresolved detail in Plotted Equations, but its still cool.

Raj Mehta 
Hetzer Andrew RedyyyRadicalyyyRatioyyCopeRativeyyyyoCoopeeeeyyyy\sin xCxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx=0.00008xCoClapopeR
I don't see what I did wrong

Michael Amadeus Wang This is ultimate: y^y=x^x, zoomed in at intersection: https://www.desmos.com/calculator/riwuhrhbm8

Tanksear Industries \sinh^{1}\left(x\right)\sinh\left(\frac{x}{\arcsin\left(y\right)}\right)=\sin\left(\sinh\left(\arcsin\left(y\right)\right)\right)
This one's a bit strange...

339397 \sin(x!+y!)=\cos(y!+x!)
I don't even know what I actually did here...

Jonahscott2020 https://www.desmos.com/calculator/2hduqcmnja Mod a house, it's fun.

Leo s. this one takes a while
\sec\left(xy\right)=\tanh\left(23y\right)

Leo s. this one actually works
\sinh\left(x^{y^{x^{y^{y^{x^{y^{y^y}}}}}}}\right)=\csc^{1}\left(y^{x^{x^{x^{x\sinh\left(y^{x\operatorname{mod}\left(x^{\operatorname{mod}\left(y,x\right)},y^{\operatorname{round}\left(yx\right)}\right)}\right)}}}}\right)

Leo s. try this one
\cos\left(x!!!\right)=\cos\left(xy!!!\right)

Leo s. \sin\left(y^{y^{\tan\left(23^{x^x}\right)}}\right)=\cot\left(y^{y^{y^{\sin\left(x\right)}}}\right)
looks kind of like this :
U
""
it does!

Tanksear Industries https://www.desmos.com/calculator/kn3xfy2txf
When you put fractals into a graphing calculator

Tanksear Industries https://www.desmos.com/calculator/lh3lupr08l
This is basically a Desmosbreaking block of colour.
But I couldn't get unresolved detail into there.
Can anyone help me out with this?

Tanksear Industries https://www.desmos.com/calculator/phbpk96nju
This does it on my computer... but apparently other computers don't.
y!=\sin\left(xy\right)
The farther down into negative y values you go, the more the madness intensifies.
Does anyone else get this weird area (seen on the left of this screenshot) whenever there's unresolved detail?

GlitchedGraph666 \frac{\frac{x\%\operatorname{of}y+\operatorname{mod}\left(\operatorname{round}\left(\frac{x^2}{y^2}+\sin\left(x\right)\right),\operatorname{round}\left(\frac{x}{2+\log\left(\frac{12}{x}\right)}\right)\right)}{\operatorname{mean}\left(\frac{\sin\left(x^2\right)}{\tan\left(y\right)},\frac{\cos\left(y^2\right)}{\tan\left(x\right)},\tan\left(x\right)\right)\cdot\log_{x+\frac{\cos\left(x^2\right)}{y^2+x^2}}\left(y\right)}}{\sin\left(x^y\right)}\cdot\frac{\frac{\ln\left(\tan\left(x^2\right)^{\log\left(x^2\right)}\right)^{\sin\left(y!\right)}}{\sqrt[x^{\sin\left(y\right)}]{\sin\left(y^{\tan\left(\frac{x}{\cot\left(y^2\right)}\right)}\right)}!+\cos\left(x^2\right)}!!+2}{\operatorname{mean}\left(\cos\left(x^2\right),\sin\left(y!!\right),\cos\left(x^2\right)\right)}!!>\frac{\frac{\sin\left(x^{\cos\left(\frac{y}{2}\right)}\right)\cdot\prod_{n=1}^{\operatorname{floor}\left(x^3\right)}n^{\cos\left(y\right)}\cdot n^2}{\gcd\left(\operatorname{floor}\left(x^{\tan\left(y\right)}\right),\operatorname{floor}\left(y^{\tan\left(x\right)}\right)\right)}}{\tan^2\left(\left(\cos\left(\frac{\pi}{5}\right)\right)\left(y\cos\left(\frac{\pi}{5}\right)+x\sin\left(\frac{\pi}{5}\right)\left(x\cos\left(\frac{2\pi}{5}\right)+y\sin\left(\frac{2\pi}{5}\right)\right)\right)\right)}
Desmos will not even try to load.

GlitchedGraph666 \cos\left(\sum_{k=\operatorname{floor}\left(y\right)}^{\prod_{n=\operatorname{floor}\left(x\right)}^{\operatorname{floor}\left(y\right)}n^{\operatorname{floor}\left(x\right)}}x^k\right)=\sin\left(\sum_{b=\operatorname{floor}\left(x\right)}^{\operatorname{floor}\left(y\right)}b^x+2\right)
Breaks Desmos without lag.

GlitchedGraph666 \tan\left(\sum_{n=\operatorname{floor}\left(x\right)}^{\operatorname{round}\left(\prod_{k=\operatorname{floor}\left(y\right)}^{\operatorname{round}\left(\tan\left(x\right)\right)\cdot5}k^{\sum_{a=\operatorname{floor}\left(x^{\tan\left(y\right)}\right)}^{\operatorname{floor}\left(x^3\right)}a^{x+\sin\left(y\right)}}\right)}n^{xxxxyyyy!!!!}\right)!!!\ge\cot\left(\prod_{c=\operatorname{floor}\left(x^2\right)}^{\sum_{v=\operatorname{round}\left(x\right)}^{\operatorname{floor}\left(y^2\right)}v^{\sin\left(x^2\right)}+\sin\left(x\right)}\frac{\sin\left(x^c\right)}{2}\right)
Desmos will die very quickly without any lag, pain, or fatal errors.

Tanksear Industries 
Tanksear Industries y=y^{\frac{x}{yyx^{xxx}}}
If you zoom in enough on a certain part, it does it.

GlitchedGraph666 
GlitchedGraph666 
GlitchedGraph666 I do not know what the hell happened there. There is even some areas where the red and blue equations were both true and also false at the same time. Also, here is the graph.

Tanksear Industries \frac{x^y}{y^x}=\frac{y^x}{x^y}
Like x^y=y^x, but crazier (zoom way in on the intersection).

Tanksear Industries 
Leo s. \tan x^y=\tan\left(y^{x!}\right)

Tanksear Industries https://www.desmos.com/calculator/n8eun05qyh
I have created a coastline.

Tanksear Industries \tan\left(x\right)\le\cot\left(yx^{\tan\left(x\right)}\right)

Tanksear Industries 
Leo s. \frac{x^{y!}}{y!^x}!=\frac{y!^x}{x^{y!}}!!
807 Comments