# Unresolved Detail In Plotted Equations

Sometimes the calculator detects that an equation is too complicated to plot perfectly in a reasonable amount of time. When this happens, the equation is plotted at lower resolution.

Was this article helpful?
221 out of 246 found this helpful
Have more questions? Submit a request

#### 927 Comments

• Tanksear Industries
• Jonahscott2020

I have some advice on parametrics. Use 't'. Format the graph like a point. Check the point below for _<=t<=_. See https://www.desmos.com/calculator/0rvcnv5tey for an example. I know this has nothing to do with Unresolved detail in Plotted Equations, but its still cool.

• Raj Mehta

What about this one?

• Hetzer Andrew

RedyyyRadicalyyyRatioyyCopeRativeyyyyoCoopeeeeyyyy\sin xCxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx=0.00008xCoClapopeR

I don't see what I did wrong

• Michael Amadeus Wang

This is ultimate: y^y=x^x, zoomed in at intersection:  https://www.desmos.com/calculator/riwuhrhbm8

• Tanksear Industries

\sinh^{-1}\left(x\right)\sinh\left(\frac{x}{\arcsin\left(y\right)}\right)=\sin\left(\sinh\left(\arcsin\left(y\right)\right)\right)

This one's a bit strange...

• 339397

\sin(x!+y!)=\cos(y!+x!)

I don't even know what I actually did here...

• Jonahscott2020
• Leo s.

this one takes a while

\sec\left(xy\right)=\tanh\left(23y\right)

• Leo s.

this one actually works

\sinh\left(x^{y^{x^{y^{y^{x^{y^{y^y}}}}}}}\right)=\csc^{-1}\left(y^{x^{x^{x^{x\sinh\left(y^{x\operatorname{mod}\left(x^{\operatorname{mod}\left(y,x\right)},y^{\operatorname{round}\left(yx\right)}\right)}\right)}}}}\right)

• Leo s.

try this one

\cos\left(x!!!\right)=\cos\left(xy!!!\right)

• Leo s.

\sin\left(y^{y^{\tan\left(23^{x^x}\right)}}\right)=\cot\left(y^{y^{y^{\sin\left(x\right)}}}\right)

looks kind of like this :

U

""

it does!

• Tanksear Industries

https://www.desmos.com/calculator/kn3xfy2txf

When you put fractals into a graphing calculator

• Tanksear Industries

https://www.desmos.com/calculator/lh3lupr08l

This is basically a Desmos-breaking block of colour.

But I couldn't get unresolved detail into there.

Can anyone help me out with this?

• Tanksear Industries

https://www.desmos.com/calculator/phbpk96nju

This does it on my computer... but apparently other computers don't.

-y!=\sin\left(xy\right)

The farther down into negative y values you go, the more the madness intensifies. Does anyone else get this weird area (seen on the left of this screenshot) whenever there's unresolved detail?

Edited by Tanksear Industries
• GlitchedGraph666

\frac{\frac{x\%\operatorname{of}y+\operatorname{mod}\left(\operatorname{round}\left(\frac{x^2}{y^2}+\sin\left(x\right)\right),\operatorname{round}\left(\frac{x}{2+\log\left(\frac{12}{x}\right)}\right)\right)}{\operatorname{mean}\left(\frac{\sin\left(x^2\right)}{\tan\left(y\right)},\frac{\cos\left(y^2\right)}{\tan\left(x\right)},\tan\left(x\right)\right)\cdot\log_{x+\frac{\cos\left(x^2\right)}{y^2+x^2}}\left(y\right)}}{\sin\left(x^y\right)}\cdot\frac{\frac{\ln\left(\tan\left(x^2\right)^{\log\left(x^2\right)}\right)^{\sin\left(y!\right)}}{\sqrt[x^{\sin\left(y\right)}]{\sin\left(y^{\tan\left(\frac{x}{\cot\left(y^2\right)}\right)}\right)}!+\cos\left(x^2\right)}!!+2}{\operatorname{mean}\left(\cos\left(x^2\right),\sin\left(y!!\right),\cos\left(x^2\right)\right)}!!>\frac{\frac{\sin\left(x^{\cos\left(\frac{y}{2}\right)}\right)\cdot\prod_{n=1}^{\operatorname{floor}\left(x^3\right)}n^{\cos\left(y\right)}\cdot n^2}{\gcd\left(\operatorname{floor}\left(x^{\tan\left(y\right)}\right),\operatorname{floor}\left(y^{\tan\left(x\right)}\right)\right)}}{\tan^2\left(\left(\cos\left(\frac{\pi}{5}\right)\right)\left(y\cos\left(\frac{\pi}{5}\right)+x\sin\left(\frac{\pi}{5}\right)\left(x\cos\left(\frac{2\pi}{5}\right)+y\sin\left(\frac{2\pi}{5}\right)\right)\right)\right)}

Desmos will not even try to load.

• GlitchedGraph666

\cos\left(\sum_{k=\operatorname{floor}\left(y\right)}^{\prod_{n=\operatorname{floor}\left(x\right)}^{\operatorname{floor}\left(y\right)}n^{\operatorname{floor}\left(x\right)}}x^k\right)=\sin\left(\sum_{b=\operatorname{floor}\left(x\right)}^{\operatorname{floor}\left(y\right)}b^x+2\right)

Breaks Desmos without lag.

• GlitchedGraph666

\tan\left(\sum_{n=\operatorname{floor}\left(x\right)}^{\operatorname{round}\left(\prod_{k=\operatorname{floor}\left(y\right)}^{\operatorname{round}\left(\tan\left(x\right)\right)\cdot5}k^{\sum_{a=\operatorname{floor}\left(x^{\tan\left(y\right)}\right)}^{\operatorname{floor}\left(x^3\right)}a^{x+\sin\left(y\right)}}\right)}n^{xxxxyyyy!!!!}\right)!!!\ge\cot\left(\prod_{c=\operatorname{floor}\left(x^2\right)}^{\sum_{v=\operatorname{round}\left(x\right)}^{\operatorname{floor}\left(y^2\right)}v^{\sin\left(x^2\right)}+\sin\left(x\right)}\frac{\sin\left(x^c\right)}{2}\right)

Desmos will die very quickly without any lag, pain, or fatal errors.

Edited by GlitchedGraph666
• Tanksear Industries
• Tanksear Industries

y=y^{\frac{x}{yyx^{xxx}}}

If you zoom in enough on a certain part, it does it.

• GlitchedGraph666
• GlitchedGraph666
• GlitchedGraph666 I do not know what the hell happened there. There is even some areas where the red and blue equations were both true and also false at the same time. Also, here is the graph.

https://www.desmos.com/calculator/giblflg7a3

• Tanksear Industries

\frac{x^y}{y^x}=\frac{y^x}{x^y}

Like x^y=y^x, but crazier (zoom way in on the intersection).

• Tanksear Industries
• Leo s.

\tan x^y=\tan\left(y^{x!}\right)

• Tanksear Industries
• Tanksear Industries

\tan\left(x\right)\le\cot\left(yx^{\tan\left(x\right)}\right)

• Tanksear Industries

https://www.desmos.com/calculator/4pimnvrqmb

Wait for it to render.

Then zoom out a bit.

3D?

• Leo s.

\frac{x^{y!}}{y!^x}!=\frac{y!^x}{x^{y!}}!!

Article is closed for comments.