Unresolved Detail In Plotted Equations

Sometimes the calculator detects that an equation is too complicated to plot perfectly in a reasonable amount of time. When this happens, the equation is plotted at lower resolution.

Have more questions? Submit a request

927 Comments

  • 1
    Avatar
    Tanksear Industries

    \sec\left(\csc\left(\tan\left(\cot\left(\sin\left(\cos\left(x\right)\right)\right)\right)\right)\right)=y

    Oh, this is a perfectly normal graph.

    Adds factorial to y

    And now it's insanity.

     

    Also, yyx!\le\frac{yy}{xx}!

    Edited by Tanksear Industries
  • 0
    Avatar
    Luna Scarlet Wing

    x^x^y=y^y^x 

  • 0
    Avatar
    Henry 281324

    x\ =\ \tan\left(\sin\left(\cos\left(\tan\left(\tan x\right)\right)\right)\right)

  • 1
    Avatar
    Tanksear Industries

    y!=x\cdot\sin\left(\cos\left(\tan\left(\cot\left(\csc\left(\sec\left(\left|HEY!\cdot GET\cdot OFF\cdot MY\cdot LAWN!\right|\right)\right)\right)\right)\right)\right)

    H=\left[1,1.2,...,4\right]

    E=\left[-1,-1.2,...,-4\right]

    Y=\sin\left(x\right)

    G=\left[1x,2x\right]

    T=x

    O=xy

  • 1
    Avatar
    Tanksear Industries

    Sideways Sine Waves: \sec\left(y\right)=\tan\left(x\right)

  • 1
    Avatar
    Tanksear Industries

    \operatorname{mod}\left(\frac{\sin x}{\sin y},\frac{\sin y}{\sin x}\right)=\operatorname{mod}\left(\frac{x}{y},\frac{y}{x}\right)

    Something about this makes it look wrong...

     

    This one's just weird.

    -\operatorname{mod}\left(x,y\right)=\operatorname{mod}\left(\sin\left(x\right),\sin\left(y\right)\right)

    Edited by Tanksear Industries
  • 1
    Avatar
    Tanksear Industries

    I can't really describe this one...

    https://www.desmos.com/calculator/4p1dh1pnwe

     

    And also, \frac{1234567890x}{0987654321x}=\frac{1234567890}{0987654321}

    Edited by Tanksear Industries
  • 1
    Avatar
  • 1
    Avatar
    Tanksear Industries

    \sin yx=\cos xyx

    This one is so close to being normal...

    Yet so far...

  • 1
    Avatar
    keegan watson

    y\le\frac{\left(\frac{x^2}{ax^2+bx+c}-x^2\right)}{y!} is crazy

  • 1
    Avatar
    keegan watson

    sorry, y\le\frac{\left(\frac{x^2}{x^2+x+1}-x^2\right)}{y!}

  • 1
    Avatar
    Foleyh

    y=\frac{1^x}{y}+\frac{y}{1^x}-\sin x-\cos x\ +\sin y+\cos y+poo    is good one 

  • 0
    Avatar
    Jonahscott2020

    https://www.desmos.com/calculator/t8wy1xmzsd It's very lovely, but zooming out causes extreme lag issues.

  • 0
    Avatar
    Jonahscott2020

    https://www.desmos.com/calculator/ind3t7q07b Slightly better. Still causes lag.

  • 0
    Avatar
    Jonahscott2020

    $\operatorname{abs}\left(\tan\left(x!^{\cot\left(y!^{\operatorname{ceil}\left(\sqrt{x!}\right)}\right)}\right)!!\right)=\operatorname{abs}\left(\tan\left(y!^{\cot\left(x!^{\operatorname{ceil}\left(\sqrt{y!}\right)}\right)}\right)!!\right)$ Now this is a really detailed graph. Old computers beware.

  • 0
    Avatar
    Tanksear Industries

    Jonahscott2020, are your graphs where we go when we die? If so, my computer is now one with the iris...

  • 0
    Avatar
    Tanksear Industries

    \frac{\cos\left(x\right)}{\cos\left(y\right)}=y!

    Is it just me or do these look like faces?

  • 0
    Avatar
    Tanksear Industries

    \max\left(xy\right)=\frac{\min\left(x\right)}{\operatorname{mod}\left(\min\left(y\right),\max\left(x\right)\right)}

  • 0
    Avatar
    Tanksear Industries

    \operatorname{nCr}\left(x,y\right)=\operatorname{nPr}\left(\operatorname{mod}\left(x,y\right),\operatorname{mod}\left(\operatorname{nPr}\left(x,y\right),\operatorname{nCr}\left(x,y\right)\right)\right)

    And here we have ourselves a proper staircase.

  • 0
    Avatar
    First Last

    sin(y!)=cos(x) causes this message.

  • 0
    Avatar
    Jonahscott2020

    \ln\left(e^x\right)=x and \ln\left(e^y\right)=y are fun.

  • 0
    Avatar
    Tanksear Industries
  • 0
    Avatar
    Tanksear Industries

    \frac{\sec\left(x\right)}{\left(\frac{\pi}{5}\right)}=\frac{\csc\left(y\right)}{\left(\frac{\sin\left(\pi x\right)}{\cos\left(5x\right)}\right)}

     

  • 0
    Avatar
    Real Spook

    \tanh\left(x\right)=\frac{2}{1+e^{-2x}}-1

    (Although it is a bit similar to \ln\left(e^x\right)=x)

  • 0
    Avatar
    Jonahscott2020

    https://www.desmos.com/calculator/1sqbogyylx  Time to play some Factored checkers or Graphed chess

  • 0
    Avatar
    Jonahscott2020

    https://www.desmos.com/calculator/y74pgjcebs this would make a great screen saver, if it wasn't for the lag.

  • 0
    Avatar
    Tanksear Industries

    \operatorname{mod}\left(x,y\right)=\operatorname{mod}\left(yx,y\right)

    Here's a tip: using the mod of x and y, you can make unresolved detail really easily.

  • 0
    Avatar
    Tanksear Industries

    https://www.desmos.com/calculator/2njtbljhem

    This one looks kind of like a topographical map...

  • 0
    Avatar
    Tanksear Industries

    https://www.desmos.com/calculator/n6szrgpffa

    Also, does anybody have any advice on how to use parametrics?

  • 0
    Avatar
    Tanksear Industries

    \left(\left(\left(\sin\left(\sin\left(\sin\left(\sin\left(\sin\left(\sin\left(\sin\left(\sin\left(\frac{x}{\sin\left(yx\right)}\right)\right)\right)\right)\right)\right)\right)\right)\right)\right)\right)x\le\left[\sin y,\sin2y,\sin3y,\sin4y\right]

Article is closed for comments.
Powered by Zendesk