# Unresolved Detail In Plotted Equations

Sometimes the calculator detects that an equation is too complicated to plot perfectly in a reasonable amount of time. When this happens, the equation is plotted at lower resolution.

221 out of 246 found this helpful
Have more questions? Submit a request

• 247556
• Danilbutygin3

y=((x^y)-(y^x)((y)^(x^y)-(y^x))((x^y)-(y^x))((x)^(x^y)-(y^x))

• Ianskot492

Thank you all for making it easier to break my computer!

• Dturnley Ames

(x(10^(floor(log(y))+1))+y)^(xy)=1 Breaks this too (this is partially concatonation)

• CHRIS WALSH

Break Desmos

Mission complete:

$\left(\frac{\left(\frac{\left(\frac{\cos\left(\frac{\left(\left(\frac{\left(\frac{\left(\left(x+y\right)!\right)^2}{\left(x-y\right)!}\right)!}{\left(\frac{\tan\left(y\right)}{\cos\left(x\right)}\right)!}\right)^2\right)!}{\frac{\left(\tan^{-1}\left(x^2+y^3\right)^3\right)!}{\tan\left(\frac{\left(y!+x!\right)}{\cos\left(y!+x!\right)}\right)}}\right)}{\frac{\left(\left(\frac{\left(\tan\left(x!+y^2\right)\right)^2}{\tan\left(x!+y!+\frac{x^2}{y!}+\frac{y^2}{x!}\right)}\right)^{\cos\left(x!^2+y!^2\right)!}\right)^{\left(x+y\right)!}}{\frac{x!}{y!}}}\right)!}{\left(\frac{x!^2}{y!^3}\right)^{\frac{\cos\left(x\right)}{\sin\left(x!+\frac{2}{x!+\frac{y!^2}{x!+\frac{y!^2}{x!+\frac{y!^2}{x!+\frac{y!^2}{x!+y!^2}}}}}\right)}}}\right)}{x!^{2y!}+\frac{\left(\frac{\left(\frac{\cos\left(\frac{\left(\left(\frac{\left(\frac{\left(\left(x+y\right)!\right)^2}{\left(x-y\right)!}\right)!}{\left(\frac{\tan\left(y\right)}{\cos\left(x\right)}\right)!}\right)^2\right)!}{\frac{\left(\tan^{-1}\left(x^2+y^3\right)^3\right)!}{\tan\left(\frac{\left(y!+x!\right)}{\cos\left(y!+x!\right)}\right)}}\right)}{\frac{\left(\left(\frac{\left(\tan\left(x!+y^2\right)\right)^2}{\tan\left(x!+y!+\frac{x^2}{y!}+\frac{y^2}{x!}\right)}\right)^{\cos\left(x!^2+y!^2\right)!}\right)^{\left(x+y\right)!}}{\frac{x!}{y!}}}\right)!}{\left(\frac{x!^2}{y!^3}\right)^{\frac{\cos\left(x\right)}{\sin\left(x!+\frac{2}{x!+\frac{y!^2}{x!+\frac{y!^2}{x!+\frac{y!^2}{x!+\frac{y!^2}{x!+y!^2}}}}}\right)}}}\right)}{x!^{2y!}+\frac{\left(\frac{\left(\frac{\cos\left(\frac{\left(\left(\frac{\left(\frac{\left(\left(x+y\right)!\right)^2}{\left(x-y\right)!}\right)!}{\left(\frac{\tan\left(y\right)}{\cos\left(x\right)}\right)!}\right)^2\right)!}{\frac{\left(\tan^{-1}\left(x^2+y^3\right)^3\right)!}{\tan\left(\frac{\left(y!+x!\right)}{\cos\left(y!+x!\right)}\right)}}\right)}{\frac{\left(\left(\frac{\left(\tan\left(x!+y^2\right)\right)^2}{\tan\left(x!+y!+\frac{x^2}{y!}+\frac{y^2}{x!}\right)}\right)^{\cos\left(x!^2+y!^2\right)!}\right)^{\left(x+y\right)!}}{\frac{x!}{y!}}}\right)!}{\left(\frac{x!^2}{y!^3}\right)^{\frac{\cos\left(x\right)}{\sin\left(x!+\frac{2}{x!+\frac{y!^2}{x!+\frac{y!^2}{x!+\frac{y!^2}{x!+\frac{y!^2}{x!+y!^2}}}}}\right)}}}\right)}{x!^{2y!}+\frac{\left(\frac{\left(\frac{\cos\left(\frac{\left(\left(\frac{\left(\frac{\left(\left(x+y\right)!\right)^2}{\left(x-y\right)!}\right)!}{\left(\frac{\tan\left(y\right)}{\cos\left(x\right)}\right)!}\right)^2\right)!}{\frac{\left(\tan^{-1}\left(x^2+y^3\right)^3\right)!}{\tan\left(\frac{\left(y!+x!\right)}{\cos\left(y!+x!\right)}\right)}}\right)}{\frac{\left(\left(\frac{\left(\tan\left(x!+y^2\right)\right)^2}{\tan\left(x!+y!+\frac{x^2}{y!}+\frac{y^2}{x!}\right)}\right)^{\cos\left(x!^2+y!^2\right)!}\right)^{\left(x+y\right)!}}{\frac{x!}{y!}}}\right)!}{\left(\frac{x!^2}{y!^3}\right)^{\frac{\cos\left(x\right)}{\sin\left(x!+\frac{2}{x!+\frac{y!^2}{x!+\frac{y!^2}{x!+\frac{y!^2}{x!+\frac{y!^2}{x!+y!^2}}}}}\right)}}}\right)}{x!^{2y!}+\frac{\left(\frac{\left(\frac{\cos\left(\frac{\left(\left(\frac{\left(\frac{\left(\left(x+y\right)!\right)^2}{\left(x-y\right)!}\right)!}{\left(\frac{\tan\left(y\right)}{\cos\left(x\right)}\right)!}\right)^2\right)!}{\frac{\left(\tan^{-1}\left(x^2+y^3\right)^3\right)!}{\tan\left(\frac{\left(y!+x!\right)}{\cos\left(y!+x!\right)}\right)}}\right)}{\frac{\left(\left(\frac{\left(\tan\left(x!+y^2\right)\right)^2}{\tan\left(x!+y!+\frac{x^2}{y!}+\frac{y^2}{x!}\right)}\right)^{\cos\left(x!^2+y!^2\right)!}\right)^{\left(x+y\right)!}}{\frac{x!}{y!}}}\right)!}{\left(\frac{x!^2}{y!^3}\right)^{\frac{\cos\left(x\right)}{\sin\left(x!+\frac{2}{x!+\frac{y!^2}{x!+\frac{y!^2}{x!+\frac{y!^2}{x!+\frac{y!^2}{x!+y!^2}}}}}\right)}}}\right)}{x!^{2y!}}}}}}\right)!=\tan\left(\left(\frac{\left(\frac{\cos\left(y\right)}{\tan\left(x\right)}\right)!}{\left(\frac{\left(\left(x-y\right)!\right)^2}{\left(x+y\right)!}\right)!}\right)!\right)$

• Transendium GD

y^2=x^2*\cos(x^2+y^2)x^2*\sin(x^2+y^2)

• David Robillard

y!=\sin\left(x!\right)+\cos\left(x!\right)+\tan\left(x!\right)

• Owen J
• zachary h

^2+y^2=234\cos\left(x^2y^2\right)

This is awesome.

• Ianskot492

https://www.desmos.com/calculator/cziy3i178i

computer almost died

Have fun!

• Sayed Abdullah Qutb (SAQ)

e^-x=-1

• Owen Korver

sin(cos(tan(csc(sec(cot(log(x)))))))=sin(cos(tan(csc(sec(cot(log(y)))))))

• Blue DragonFire

log(xy)=log(x)+log(y), oh noes.

• Ianskot492

Checkerboard  \sin\left(x\right)\cdot\cos\left(y\right)\tan\left(y\right)=0

(note: not actually a computer-breaker, but fun anyway)

• 23ccamarena

y=\cos\left(\pi\left|xy^2\right|\right)

• Ssong1

sin(cos(tan(x)))=tan(cos(sin(y)))

• Ssong1

\sin\left(x^y\right)=\cos\left(y^x\right)

• nyerka nyerka

\frac{\cos\left(\frac{x}{y}^2\right)}{\tan\left(e^2\right)}=\frac{\frac{\sqrt{\cos\left(\frac{e}{x}\right)}}{\cos\left(x\right)y}}{\sin\left(\frac{x}{\frac{y^2}{\sin\left(xy\right)}}\right)}

• nyerka nyerka

y^2=x^2\cdot\cos\left(x^2+y^2\right)\cdot\sin\left(x^2+y^2\right)+\tan\left(x^2+y^2\right)\cdot y^2

• nyerka nyerka
• DarkfangGaming

I just combined some stuff and got this beautiful work of art... sorta.

• Owen J
• Owen J
• BurgerPants

I think desmos hates me now

• Faelynn Allegro

Sin(x/y)=x or sin(x/y)=y are absolute messes but also works of art

• Dmytro Hlukhaniuk

That`s not the case with unresolved pattern or detail, but looks cool!

\left(x-1y\right)\left(x+1\right)\left(xy-2y\right)\left(yx-3\right)\left(xy^2-2\right)=2

• David Robillard

x^{\operatorname{floor}\left(y\right)}=y^{\operatorname{floor}\left(x\right)}

• SuperCoolDude04

e^(sin(x)+cos(y))=sin(e^(x+y)) is crazy

• Davin Sivertson

\cos\left(\sin\left(x\cdot y^3\right)\right)=\csc\left(\tan\left(\sec\left(x+y^{13}\right)\right)\right) Works pretty well.

• The Fruit Roll-Up

This one breaks it, but doesn't crash your computer.

y=x^4-\frac{2x^3}{y}\cdot\int_y^{10y}\sin\left(x^2\right)\ dx

You can't type in any equations after you've put this in, even if you remove the equation. You have to refresh to get Desmos to work again...