Unresolved Detail In Plotted Equations

Sometimes the calculator detects that an equation is too complicated to plot perfectly in a reasonable amount of time. When this happens, the equation is plotted at lower resolution.

Have more questions? Submit a request

314 Comments

  • 1
    Avatar
    N00BM4TH

    For example: x^y=y^x

  • 2
    Avatar
    David Summa

    sin(x*y) = cos(x*y) takes it to a whole new level.

  • 3
    Avatar
    marcus druckman

    $y=\frac{\left(\frac{x^2}{y}\right)}{\left|\left(\frac{x^2}{y^2}\right)\right|}$ is a mess!!!

  • -1
    Avatar
    Tom Lynd

    (sinx)^y=x^siny

  • -3
    Avatar
    Jacob Claassen

    sin(x/y)=4

  • -2
    Avatar
    Isaac Schultz

    cos(x)+sin(x*y)=cos(y*x)+sin(y)

  • -2
    Avatar
    Isaac Schultz

    y^2=x^2*sin(x^2+y^2)

  • -2
    Avatar
    Isaac Schultz

    (x+y)/(x*y)=sin(x)+cos(y)

  • -2
    Avatar
    Isaac Schultz

    cos(x)+sin(y)=0

  • -2
    Avatar
    Rishi Sharma

    just sin y=cosx will do the work.......

     

  • -1
    Avatar
    Sean Wilson

    tan(x/y)=x works pretty well

  • 0
    Avatar
    Sean Wilson

    $\tan \left(\frac{x}{y}\right)=\cos \left(\frac{x}{y}\right)$

    $\tan \left(x\cdot y\right)=\sqrt[3]{y}$

    $\frac{\cos \left(\frac{x}{y}\right)}{\tan \left(\frac{x}{y}\right)}=x\cdot y$

    $\tan \left(\frac{x}{y}\right)=\tan \left(xy\right)$

    A few others...

  • 2
    Avatar
    Andrew Held

    $0.5=\left(\cos \left(x\right)+\cos \left(y\sin \left(\frac{\pi }{5}\right)+x\cos \left(\frac{\pi }{5}\right)\right)+\cos \left(y\sin \left(\frac{2\pi }{5}\right)+x\cos \left(\frac{2\pi }{5}\right)\right)+\cos \left(y\sin \left(\frac{3\pi }{5}\right)+x\cos \left(\frac{3\pi }{5}\right)\right)+\cos \left(y\sin \left(\frac{4\pi }{5}\right)+x\cos \left(\frac{4\pi }{5}\right)\right)\right)$

     

    Nice looking graph, but apparently it has unresolved fine detail.

  • 0
    Avatar
    N00BM4TH

    https://www.desmos.com/calculator/sdcf8my7a0 could be something, Adjustable fine detail missing! =D

  • -1
    Avatar
    Bob Deen

    x^2=sin(xy^2)

  • -1
    Avatar
    Jose Luis Nunez

    x^(ln(y)) = y^(ln(x)) opens a hole in the universe, apparently.

  • 0
    Avatar
    Bob Deen

    sin(x^2)=cos(y^2)  you can guess what that does.

  • 0
    Avatar
    Bob Deen

    and if you want to combine my two comments together, sin(yx^2)=cos(xy^2)  [it is really complicated]

  • 0
    Avatar
    Ciccio Mostro Vannella

    $-\frac{1}{2}\cos x^2+x\cos \left(e^{\sin x}+2x\left(\sin y\right)\right)=0$ this too is too much complicated....

  • -1
    Avatar
    Paul Medina

    tan(y)² = sin(x)²

    Super crazy!

  • -1
    Avatar
    Sean Wilson

    $\tan x^y=\tan y^x$ Takes a while even at low resolution!

  • 5
    Avatar
    Sean Wilson

    $\cos xy=\frac{\ln \frac{y}{x}}{\cos xy}$

    $\tan ay=\sin bx$  <<< Adjustable insanity!

    $\frac{\tan ay}{\sin bx}=\frac{\sin bx}{\tan ay}$  <<< Adjustable Insanity 2!

    $\cos xy=\sin xy$

    $\ln x=\frac{\ln y}{\cos x}$

    $\frac{\ln x}{\ln y}=\frac{\sin y}{\cos x}$

    $\left(\sin x\right)\cdot \sin y=\frac{xy}{\sin x}$      <<< Zoom Out A Lot For This One

    $\cos xy=\frac{\sin xy}{x}$

    $\tan \left(\cos \left(\sin x\right)\right)=\tan \left(\cos \left(\sin y\right)\right)$

    $\frac{\tan x}{\frac{\sin y}{\left(\tan x\right)\cdot \sin y}}=\frac{\sin y}{\left(\tan x\right)\cdot \sin y}$

     

    And now, the holy mother of equations, this:                                                                                   (Calculator can't even do this one!)

     

    $\frac{\frac{\tan \left(\cos \left(\sin x\right)\right)}{\left(\cos xy\right)\cdot \frac{\ln \frac{y}{x}}{\cos xy}}}{\frac{\tan \left(\cos \left(\sin x\right)\right)}{\left(\cos xy\right)\cdot \frac{\ln \frac{y}{x}}{\cos xy}}\cdot \frac{\frac{\tan \left(\cos \left(\sin y\right)\right)}{\left(\cos xy\right)\cdot \frac{\sin xy}{x}}}{\left(\cos xy\right)\cdot \frac{\sin xy}{x}}}=\frac{\frac{\tan \left(\cos \left(\sin y\right)\right)}{\left(\cos xy\right)\cdot \frac{\sin xy}{x}}}{\left(\cos xy\right)\cdot \frac{\sin xy}{x}}$ 

     

  • -1
    Avatar
    rednax

    $\cos \left(y\cdot x\right)=\left|\tan \left(\frac{x}{y}\right)\right|$

    this one is my fav

  • -1
    Avatar
    Mimey Muth

    I was fiddling around with combining equations of circles with sinusoidal equations and came across this:

    $y=\left(x^2+y^2-16\right)\cos \left(\left(x^2+y^2-16\right)\left(x\right)\right)$

    It looks incredible.   

  • -1
    Avatar
    Mimey Muth

    Also, this is a compound interest formula increasing the amplitude of a cosine function with k=equation of circle.

    $y=\frac{1}{2}\left(1+0.3\right)^{\left(2-x\right)}\left(\cos \left(\left(x^2+y^2-16\right)\left(x\right)\right)\right)$

  • 0
    Avatar
    John Fawcett
  • -1
    Avatar
    Cameron “tech tech” Bennett

    $x\sin \left(xx+x\right)=\left|y\right|$

    It's... Interesting. It works just fine if you remove the absolute value of Y

  • -3
    Avatar
    Talon Harris

    y=xyxy/xxy

  • -1
    Avatar
    Bob Deen

    y=sin(xyxyxyxy/xxyxyxy)

  • 0
    Avatar
    Ezra Seidel

    Or x!!=y!!

Please sign in to leave a comment.
Powered by Zendesk