Unresolved Detail In Plotted Equations

Sometimes the calculator detects that an equation is too complicated to plot perfectly in a reasonable amount of time. When this happens, the equation is plotted at lower resolution.

Have more questions? Submit a request

215 Comments

  • 4
    Avatar
    Sean Wilson

    $\cos xy=\frac{\ln \frac{y}{x}}{\cos xy}$

    $\tan ay=\sin bx$  <<< Adjustable insanity!

    $\frac{\tan ay}{\sin bx}=\frac{\sin bx}{\tan ay}$  <<< Adjustable Insanity 2!

    $\cos xy=\sin xy$

    $\ln x=\frac{\ln y}{\cos x}$

    $\frac{\ln x}{\ln y}=\frac{\sin y}{\cos x}$

    $\left(\sin x\right)\cdot \sin y=\frac{xy}{\sin x}$      <<< Zoom Out A Lot For This One

    $\cos xy=\frac{\sin xy}{x}$

    $\tan \left(\cos \left(\sin x\right)\right)=\tan \left(\cos \left(\sin y\right)\right)$

    $\frac{\tan x}{\frac{\sin y}{\left(\tan x\right)\cdot \sin y}}=\frac{\sin y}{\left(\tan x\right)\cdot \sin y}$

     

    And now, the holy mother of equations, this:                                                                                   (Calculator can't even do this one!)

     

    $\frac{\frac{\tan \left(\cos \left(\sin x\right)\right)}{\left(\cos xy\right)\cdot \frac{\ln \frac{y}{x}}{\cos xy}}}{\frac{\tan \left(\cos \left(\sin x\right)\right)}{\left(\cos xy\right)\cdot \frac{\ln \frac{y}{x}}{\cos xy}}\cdot \frac{\frac{\tan \left(\cos \left(\sin y\right)\right)}{\left(\cos xy\right)\cdot \frac{\sin xy}{x}}}{\left(\cos xy\right)\cdot \frac{\sin xy}{x}}}=\frac{\frac{\tan \left(\cos \left(\sin y\right)\right)}{\left(\cos xy\right)\cdot \frac{\sin xy}{x}}}{\left(\cos xy\right)\cdot \frac{\sin xy}{x}}$ 

     

  • 3
    Avatar
    David Summa

    sin(x*y) = cos(x*y) takes it to a whole new level.

  • 2
    Avatar
    marcus druckman

    $y=\frac{\left(\frac{x^2}{y}\right)}{\left|\left(\frac{x^2}{y^2}\right)\right|}$ is a mess!!!

  • 1
    Avatar
    Liam Watson

    y=x^{y^x}-y^{x^y}

     

  • 1
    Avatar
    David Summa

    For x!! = y!!

    I feel like its trying to communicate with some weird cryptography.

  • 1
    Avatar
    Suraccam000
    Do -|sin x|=tan y for an instant ocean.
  • 1
    Avatar
    - Aylizior -

    I saw a recurring pattern of basically sinx=siny here... so I took that and built a holy pattern of greatness:

    $\tan \left(\frac{1x}{\cos \left(y\right)}\right)\le \tan \left(\frac{1y}{\cos \left(x\right)}\right)$

  • 1
    Avatar
    Harsimar Singh

    floor(x)+floor(y)=4

  • 1
    Avatar
    Urav Maniar

    Plot y=\ \ln e^x

    Zoom till range: -2 E-15 <= x <= 2 E-15 

                            -1 E-15 <= y <= 1 E-15.

     

    Edited by Urav Maniar
  • 1
    Avatar
    N00BM4TH

    For example: x^y=y^x

  • 1
    Avatar
    菅原悠人

    This draws countless ∞.

    sin(x)!=cos(y)

     

  • 1
    Avatar
    Kelvingtonib

    x^2y^2=\left(\tan \left(\pi ^{y^{\frac{2}{5}}}\right)\right)

    This creates two perfect gradients

  • 1
    Avatar
    Tyler “TySkyo” Skywalker

    wy=zx, if w=1/y and z=1/x

  • 1
    Avatar
    Sean Wilson

    $\tan \left(\frac{x}{y}\right)=\cos \left(\frac{x}{y}\right)$

    $\tan \left(x\cdot y\right)=\sqrt[3]{y}$

    $\frac{\cos \left(\frac{x}{y}\right)}{\tan \left(\frac{x}{y}\right)}=x\cdot y$

    $\tan \left(\frac{x}{y}\right)=\tan \left(xy\right)$

    A few others...

  • 1
    Avatar
  • 1
    Avatar
    Tpierson0958

    \sin \left(22\left(\frac{\left|\sqrt{y^2+x^2}\right|}{\operatorname{sign}\left(\sqrt{y^2+x^2}\right)-\sqrt{y^2+x^2}}\cdot \sin \left(\arctan \left(\frac{y}{x}\right)\right)\right)\right)=\sin \left(22\left(\left(\frac{\left|\sqrt{y^2+x^2}\right|}{\operatorname{sign}\left(\sqrt{y^2+x^2}\right)-\sqrt{y^2+x^2}}\right)\cos \left(\arctan \left(\frac{y}{x}\right)\right)\right)\right)

  • 1
    Avatar
    Jhuber

    navagate the green dot up without hitting the red lines https://www.desmos.com/calculator/c4hnr3hyup 

  • 1
    Avatar
    Jhuber

    mod(cos(x),sin(x))

  • 1
    Avatar
    Lawrence Tran

    y=x!^{\sin \left(\frac{y}{\sqrt{\tan \left(x\right)}}\right)}

     

    Is cool.

  • 1
    Avatar
    CalculusMaster

    This one is quite crazy:

    \sin \left(10x^2\right)=\cos \left(10y^2\right)

    Placing this in the 3-d calculator is also pretty cool

    \sin \left(10x^2\right)\cos \left(10y^2\right)

    Edited by CalculusMaster
  • 0
    Avatar
    Bombz z

    \left(\tan x\right)\left(\tan y\right)=a

    change the a value all you want

  • 0
    Avatar
    Ciccio Mostro Vannella

    $-\frac{1}{2}\cos x^2+x\cos \left(e^{\sin x}+2x\left(\sin y\right)\right)=0$ this too is too much complicated....

  • 0
    Avatar
    Harry Harrison

    $\frac{d}{dx}\sin \left(x^y\right)=\tan \left(y^{\tan \left(x^y\right)}\right)$

  • 0
    Avatar
    INiklus 123

    y=x-(absolute value of x+absolute value of y) also works

  • 0
    Avatar
    Arnav Thakar

    \tan y^a=\tan x^a

    Where you click the play button for a

  • 0
    Avatar
    11003105

    um try this:

    floor(2x)+floor(2y)>=floor(x)+floor(y)+floor(x+y)

  • 0
    Avatar
    Seth Upperman

    x^y+y^xsin(x)=a

  • 0
    Avatar
    Ezra Seidel

    Or x!!=y!!

  • 0
    Avatar
    NathoMIL1416- Coding Tutorials Minecraft and More!

    For some PURE INSANITY: sin(cos(tan(x^2)))=sin(cos(tan(y^2)

    For ALL the circles possible: sin(x^2)=cos(y^2)

  • 0
    Avatar
    Scott “-x-” Blair
Please sign in to leave a comment.
Powered by Zendesk