# Unresolved Detail In Plotted Equations

Sometimes the calculator detects that an equation is too complicated to plot perfectly in a reasonable amount of time. When this happens, the equation is plotted at lower resolution.

63 out of 67 found this helpful
Have more questions? Submit a request

• Sean Wilson

$\cos xy=\frac{\ln \frac{y}{x}}{\cos xy}$

$\tan ay=\sin bx$  <<< Adjustable insanity!

$\frac{\tan ay}{\sin bx}=\frac{\sin bx}{\tan ay}$  <<< Adjustable Insanity 2!

$\cos xy=\sin xy$

$\ln x=\frac{\ln y}{\cos x}$

$\frac{\ln x}{\ln y}=\frac{\sin y}{\cos x}$

$\left(\sin x\right)\cdot \sin y=\frac{xy}{\sin x}$      <<< Zoom Out A Lot For This One

$\cos xy=\frac{\sin xy}{x}$

$\tan \left(\cos \left(\sin x\right)\right)=\tan \left(\cos \left(\sin y\right)\right)$

$\frac{\tan x}{\frac{\sin y}{\left(\tan x\right)\cdot \sin y}}=\frac{\sin y}{\left(\tan x\right)\cdot \sin y}$

And now, the holy mother of equations, this:                                                                                   (Calculator can't even do this one!)

$\frac{\frac{\tan \left(\cos \left(\sin x\right)\right)}{\left(\cos xy\right)\cdot \frac{\ln \frac{y}{x}}{\cos xy}}}{\frac{\tan \left(\cos \left(\sin x\right)\right)}{\left(\cos xy\right)\cdot \frac{\ln \frac{y}{x}}{\cos xy}}\cdot \frac{\frac{\tan \left(\cos \left(\sin y\right)\right)}{\left(\cos xy\right)\cdot \frac{\sin xy}{x}}}{\left(\cos xy\right)\cdot \frac{\sin xy}{x}}}=\frac{\frac{\tan \left(\cos \left(\sin y\right)\right)}{\left(\cos xy\right)\cdot \frac{\sin xy}{x}}}{\left(\cos xy\right)\cdot \frac{\sin xy}{x}}$

• David Summa

sin(x*y) = cos(x*y) takes it to a whole new level.

• marcus druckman

$y=\frac{\left(\frac{x^2}{y}\right)}{\left|\left(\frac{x^2}{y^2}\right)\right|}$ is a mess!!!

• Liam Watson

y=x^{y^x}-y^{x^y}

• David Summa

For x!! = y!!

I feel like its trying to communicate with some weird cryptography.

• Suraccam000
Do -|sin x|=tan y for an instant ocean.
• - Aylizior -

I saw a recurring pattern of basically sinx=siny here... so I took that and built a holy pattern of greatness:

$\tan \left(\frac{1x}{\cos \left(y\right)}\right)\le \tan \left(\frac{1y}{\cos \left(x\right)}\right)$

• Harsimar Singh

floor(x)+floor(y)=4

• Urav Maniar

Plot y=\ \ln e^x

Zoom till range: -2 E-15 <= x <= 2 E-15

-1 E-15 <= y <= 1 E-15.

Edited by Urav Maniar
• N00BM4TH

For example: x^y=y^x

• 菅原悠人

This draws countless ∞.

sin(x)!=cos(y)

• Kelvingtonib

x^2y^2=\left(\tan \left(\pi ^{y^{\frac{2}{5}}}\right)\right)

• Tyler “TySkyo” Skywalker

wy=zx, if w=1/y and z=1/x

• Sean Wilson

$\tan \left(\frac{x}{y}\right)=\cos \left(\frac{x}{y}\right)$

$\tan \left(x\cdot y\right)=\sqrt[3]{y}$

$\frac{\cos \left(\frac{x}{y}\right)}{\tan \left(\frac{x}{y}\right)}=x\cdot y$

$\tan \left(\frac{x}{y}\right)=\tan \left(xy\right)$

A few others...

• Tpierson0958

\sin \left(22\left(\frac{\left|\sqrt{y^2+x^2}\right|}{\operatorname{sign}\left(\sqrt{y^2+x^2}\right)-\sqrt{y^2+x^2}}\cdot \sin \left(\arctan \left(\frac{y}{x}\right)\right)\right)\right)=\sin \left(22\left(\left(\frac{\left|\sqrt{y^2+x^2}\right|}{\operatorname{sign}\left(\sqrt{y^2+x^2}\right)-\sqrt{y^2+x^2}}\right)\cos \left(\arctan \left(\frac{y}{x}\right)\right)\right)\right)

• Jhuber

navagate the green dot up without hitting the red lines https://www.desmos.com/calculator/c4hnr3hyup

• Jhuber

mod(cos(x),sin(x))

• Lawrence Tran

y=x!^{\sin \left(\frac{y}{\sqrt{\tan \left(x\right)}}\right)}

Is cool.

• CalculusMaster

This one is quite crazy:

\sin \left(10x^2\right)=\cos \left(10y^2\right)

Placing this in the 3-d calculator is also pretty cool

\sin \left(10x^2\right)\cos \left(10y^2\right)

Edited by CalculusMaster
• Bombz z

\left(\tan x\right)\left(\tan y\right)=a

change the a value all you want

• Ciccio Mostro Vannella

$-\frac{1}{2}\cos x^2+x\cos \left(e^{\sin x}+2x\left(\sin y\right)\right)=0$ this too is too much complicated....

• Harry Harrison

$\frac{d}{dx}\sin \left(x^y\right)=\tan \left(y^{\tan \left(x^y\right)}\right)$

• INiklus 123

y=x-(absolute value of x+absolute value of y) also works

• Arnav Thakar

\tan y^a=\tan x^a

Where you click the play button for a

• 11003105

um try this:

floor(2x)+floor(2y)>=floor(x)+floor(y)+floor(x+y)

• Seth Upperman

x^y+y^xsin(x)=a

• Ezra Seidel

Or x!!=y!!

• NathoMIL1416- Coding Tutorials Minecraft and More!

For some PURE INSANITY: sin(cos(tan(x^2)))=sin(cos(tan(y^2)

For ALL the circles possible: sin(x^2)=cos(y^2)

• Scott “-x-” Blair